Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Collections
    • Aggregator(T, U) Class
    • Aggregator2(T, U) Class
    • Aggregator2Group Class
    • Aggregator2Group(T) Class
    • AggregatorExtensions Class
    • AggregatorGroup Class
    • AggregatorGroup(T) Class
    • Aggregators Class
    • Array1D(T) Structure
    • Array2D(T) Structure
    • ArraySlice(T) Structure
    • DataFrame Class
    • DataFrame(R, C) Class
    • DataFrameRow(R, C) Class
    • DateTimeUnit Enumeration
    • Direction Enumeration
    • Grouping Class
    • Grouping(TKey) Class
    • IAccumulator(T, U) Interface
    • IAccumulator2(T, U) Interface
    • IAccumulator2(T, U, V) Interface
    • IAggregator Interface
    • IAggregator(T) Interface
    • IAggregator2 Interface
    • IAggregator2(T) Interface
    • ICategoricalVector Interface
    • IDataFrame Interface
    • IGrouping Interface
    • IIndex Interface
    • Index Class
    • Index(T) Class
    • IPivot Interface
    • IVector Interface
    • JoinType Enumeration
    • NativeArray1D(T) Structure
    • NativeArray2D(T) Structure
    • NativeArraySlice(T) Structure
    • Pivot Class
    • Pivot(R, C) Class
    • Recurrence Class
    • SortOrder Enumeration
    • TypedVectorWrapper(K, T) Structure
  • ICategoricalVector Interface
    • Properties
    • Methods
  • Methods
    • SetLevelIndicatorInto Method
ICategoricalVector MethodsExtreme Optimization Numerical Libraries for .NET Professional

The ICategoricalVector type exposes the following members.

Methods

  NameDescription
Public methodAggregateIntoT, U(VectorT, AggregatorT, U, VectorU)
Aggregates the specified vector over each group and returns the result.
(Inherited from IGrouping.)
Public methodAggregateIntoT, U(VectorT, VectorT, Aggregator2T, U, VectorU)
Aggregates the specified vector over each group and returns the result.
(Inherited from IGrouping.)
Public methodAppend
Appends a vector at the end of this vector and returns the result.
(Inherited from IVector.)
Public methodAppendMissingValues
Appends the specified number of missing values to this vector and returns the result.
(Inherited from IVector.)
Public methodAsU
Returns the object as a strongly typed vector of the specified type.
(Inherited from IVector.)
Public methodAsCategorical
Converts the vector to a categorical vector.
(Inherited from IVector.)
Public methodFillMissingValues
Replaces all missing values in a vector with the previous or next non-missing value.
(Inherited from IVector.)
Public methodGetIndexes
Gets a sequence of indexes for the grouping.
(Inherited from IGrouping.)
Public methodGetJoinInfoWith
Infrastructure. Computes the information necessary to join the object with another indexed object.
(Inherited from IVector.)
Public methodGetValue
Gets the value at the specified index.
(Inherited from IVector.)
Public methodGetValues(Int32)
Returns a new object that contains the values at the specified positions.
(Inherited from IVector.)
Public methodGetValues(Int32, Int32, Int32)
Returns a new object that contains the values at the specified positions.
(Inherited from IVector.)
Public methodIsMissing
Indicates whether the value at the specified index is missing.
(Inherited from IVector.)
Public methodSetLevelIndicatorInto
Public methodSort
Returns a permutation that can be used to sort the data in the vector in the specified order.
(Inherited from IVector.)
Top
Extension Methods

  NameDescription
Public Extension MethodUnstackR, C
Transforms a vector with a two-level index into a data frame whose columns correspond to the second level in the index.
(Defined by DataFrame.)
Top
See Also

Reference

ICategoricalVector Interface
Extreme.Collections Namespace

Copyright (c) 2004-2016 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.