Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.DataAnalysis.Models
    • ClassificationModel(T) Class
    • ClusteringModel(T) Class
    • ITransformationModel Interface
    • Model Class
    • ModelExtensions Class
    • ModelFitOptions Class
    • ModelInput Class
    • ModelInputCategory Enumeration
    • ModelInputFormat Enumeration
    • ModelInputGroup Class
    • ModelSerialization Enumeration
    • ModelStatus Enumeration
    • ModelTerm Class
    • ModelTermCollection Class
    • ModelTermKind Enumeration
    • RegressionModel(T) Class
    • TransformationModel(T) Class
  • ClassificationModel(T) Class
    • ClassificationModel(T) Constructor
    • Properties
    • Methods
  • Methods
    • Contains Method
    • Predict Method Overloads
    • PredictCore Method Overloads
    • PredictProbabilities Method Overloads
    • PredictProbabilitiesCore Method Overloads
    • PredictProbabilitiesInto Method Overloads
  • Predict Method Overloads
    • Predict Method (IDataFrame, ModelInputFormat)
    • Predict Method (Matrix(T), ModelInputFormat)
    • Predict Method (Vector(T), ModelInputFormat)
  • Predict Method (Vector(T), ModelInputFormat)

ClassificationModelTPredict Method (VectorT, ModelInputFormat)

Extreme Optimization Numerical Libraries for .NET Professional
Predicts the value of the output corresponding to the specified input.

Namespace:  Extreme.DataAnalysis.Models
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public int Predict(
	Vector<T> features,
	ModelInputFormat format = ModelInputFormat.Automatic
)
Public Function Predict ( 
	features As Vector(Of T),
	Optional format As ModelInputFormat = ModelInputFormat.Automatic
) As Integer
public:
int Predict(
	Vector<T>^ features, 
	ModelInputFormat format = ModelInputFormat::Automatic
)
member Predict : 
        features : Vector<'T> * 
        ?format : ModelInputFormat 
(* Defaults:
        let _format = defaultArg format ModelInputFormat.Automatic
*)
-> int 

Parameters

features
Type: Extreme.MathematicsVectorT
A vector that contains the input values for the regression.
format (Optional)
Type: Extreme.DataAnalysis.ModelsModelInputFormat
A ModelInputFormat value that specifies how the elements in features relate to the variables in the model.

Return Value

Type: Int32
The predicted value.
See Also

Reference

ClassificationModelT Class
Predict Overload
Extreme.DataAnalysis.Models Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.