Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.DataAnalysis.Models
    • ClassificationModel(T) Class
    • ClusteringModel(T) Class
    • ITransformationModel Interface
    • Model Class
    • ModelExtensions Class
    • ModelFitOptions Class
    • ModelInput Class
    • ModelInputCategory Enumeration
    • ModelInputFormat Enumeration
    • ModelInputGroup Class
    • ModelSerialization Enumeration
    • ModelStatus Enumeration
    • ModelTerm Class
    • ModelTermCollection Class
    • ModelTermKind Enumeration
    • RegressionModel(T) Class
    • TransformationModel(T) Class
  • ModelInputGroup Class
    • Properties
    • Methods
  • Methods
    • AddIntercept Method
    • AsCategorical Method
    • AsCategoricalColumns Method
    • AsMatrix(T) Method
    • AsRowVectors(T) Method
    • AsVector(T) Method
    • GetEncoding Method
    • InferSchema Method Overloads
    • Populate Method Overloads
    • RemoveConstantColumns Method
    • RemoveIntercept Method
    • SetEncoding Method
  • SetEncoding Method

ModelInputGroupSetEncoding Method

Extreme Optimization Numerical Libraries for .NET Professional
Sets the encoding of the specified variable.

Namespace:  Extreme.DataAnalysis.Models
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public void SetEncoding(
	string key,
	Func<IIndex, int, CategoricalEncoding> encoding,
	int referenceLevel = -1
)
Public Sub SetEncoding ( 
	key As String,
	encoding As Func(Of IIndex, Integer, CategoricalEncoding),
	Optional referenceLevel As Integer = -1
)
public:
void SetEncoding(
	String^ key, 
	Func<IIndex^, int, CategoricalEncoding^>^ encoding, 
	int referenceLevel = -1
)
member SetEncoding : 
        key : string * 
        encoding : Func<IIndex, int, CategoricalEncoding> * 
        ?referenceLevel : int 
(* Defaults:
        let _referenceLevel = defaultArg referenceLevel -1
*)
-> unit 

Parameters

key
Type: SystemString
The key of the variable.
encoding
Type: SystemFuncIIndex, Int32, CategoricalEncoding
A function that generates the encoding.
referenceLevel (Optional)
Type: SystemInt32
Optional. The zero-based index of the reference level of the encoding.
Exceptions

ExceptionCondition
InvalidOperationExceptionkey does not correspond to a categorical variable in the group.
See Also

Reference

ModelInputGroup Class
Extreme.DataAnalysis.Models Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.