Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.DataAnalysis.Models
    • ClassificationModel(T) Class
    • ClusteringModel(T) Class
    • ITransformationModel Interface
    • Model Class
    • ModelExtensions Class
    • ModelFitOptions Class
    • ModelInput Class
    • ModelInputCategory Enumeration
    • ModelInputFormat Enumeration
    • ModelInputGroup Class
    • ModelSerialization Enumeration
    • ModelStatus Enumeration
    • ModelTerm Class
    • ModelTermCollection Class
    • ModelTermKind Enumeration
    • RegressionModel(T) Class
    • TransformationModel(T) Class
  • RegressionModel(T) Class
    • RegressionModel(T) Constructor
    • Properties
    • Methods
  • Methods
    • Contains Method
    • GetAkaikeInformationCriterion Method
    • GetBayesianInformationCriterion Method
    • Predict Method Overloads
    • PredictCore Method Overloads
    • Summarize Method Overloads
  • PredictCore Method Overloads
    • PredictCore Method (Matrix(T), Boolean)
    • PredictCore Method (Vector(T), Boolean)
  • PredictCore Method (Vector(T), Boolean)

RegressionModelTPredictCore Method (VectorT, Boolean)

Extreme Optimization Numerical Libraries for .NET Professional
Predicts the value of the dependent variable based on the specified values of the features.

Namespace:  Extreme.DataAnalysis.Models
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
protected virtual T PredictCore(
	Vector<T> features,
	bool modelFeaturesOnly
)
Protected Overridable Function PredictCore ( 
	features As Vector(Of T),
	modelFeaturesOnly As Boolean
) As T
protected:
virtual T PredictCore(
	Vector<T>^ features, 
	bool modelFeaturesOnly
)
abstract PredictCore : 
        features : Vector<'T> * 
        modelFeaturesOnly : bool -> 'T 
override PredictCore : 
        features : Vector<'T> * 
        modelFeaturesOnly : bool -> 'T 

Parameters

features
Type: Extreme.MathematicsVectorT
A vector containing the values for the independent variables.
modelFeaturesOnly
Type: SystemBoolean
Specifies whether features includes only features that appear in the fitted model.

Return Value

Type: T
The value of the dependent variable predicted by the regression.
Exceptions

ExceptionCondition
ArgumentNullExceptionfeatures is .
DimensionMismatchException

The length of features does not match the required number of values.

See Also

Reference

RegressionModelT Class
PredictCore Overload
Extreme.DataAnalysis.Models Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.