Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.DataAnalysis.Models
    • ClassificationModel(T) Class
    • ClusteringModel(T) Class
    • ITransformationModel Interface
    • Model Class
    • ModelExtensions Class
    • ModelFitOptions Class
    • ModelInput Class
    • ModelInputCategory Enumeration
    • ModelInputFormat Enumeration
    • ModelInputGroup Class
    • ModelSerialization Enumeration
    • ModelStatus Enumeration
    • ModelTerm Class
    • ModelTermCollection Class
    • ModelTermKind Enumeration
    • RegressionModel(T) Class
    • TransformationModel(T) Class
  • TransformationModel(T) Class
    • TransformationModel(T) Constructors
    • Properties
    • Methods

TransformationModelT Class

Extreme Optimization Numerical Libraries for .NET Professional
Serves a the base class for classes that represent transformation-like models.
Inheritance Hierarchy

SystemObject
  Extreme.DataAnalysis.ModelsModel
    Extreme.DataAnalysis.ModelsTransformationModelT
      Extreme.Statistics.MultivariateFactorAnalysis
      Extreme.Statistics.MultivariatePrincipalComponentAnalysis

Namespace:  Extreme.DataAnalysis.Models
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public abstract class TransformationModel<T> : Model
Public MustInherit Class TransformationModel(Of T)
	Inherits Model
generic<typename T>
public ref class TransformationModel abstract : public Model
[<AbstractClassAttribute>]
type TransformationModel<'T> =  
    class
        inherit Model
    end

Type Parameters

T

The TransformationModelT type exposes the following members.

Constructors

  NameDescription
Protected methodTransformationModelT(MatrixDouble)
Constructs a new TransformationModelT.
Protected methodTransformationModelT(IDataFrame, String)
Constructs a new TransformationModelT.
Protected methodTransformationModelT(IDataFrame, String)
Constructs a new TransformationModelT.
Protected methodTransformationModelT(IEnumerableVectorDouble, VectorDouble)
Constructs a new TransformationModelT.
Top
Properties

  NameDescription
Public propertyBaseFeatureIndex
Gets an index containing the keys of the columns that are required inputs to the model.
(Inherited from Model.)
Public propertyComputed Obsolete.
Gets whether the model has been computed.
(Inherited from Model.)
Public propertyData
Gets an object that contains all the data used as input to the model.
(Inherited from Model.)
Public propertyFeatures
Gets a matrix that contains the features.
Public propertyFitted
Gets whether the model has been computed.
(Inherited from Model.)
Public propertyInputSchema
Gets the schema for the features used for fitting the model.
(Inherited from Model.)
Public propertyMaxDegreeOfParallelism
Gets or sets the maximum degree of parallelism enabled by this instance.
(Inherited from Model.)
Public propertyModelSchema
Gets the collection of variables used in the model.
(Inherited from Model.)
Public propertyNumberOfObservations
Gets the number of observations the model is based on.
(Inherited from Model.)
Protected propertyParallelOptions
Gets or sets an object that specifies how the calculation of the model should be parallelized.
(Inherited from Model.)
Public propertyStatus
Gets the status of the model, which determines which information is available.
(Inherited from Model.)
Public propertySupportsWeights
Indicates whether the model supports case weights.
(Inherited from Model.)
Public propertyWeights
Gets or sets the actual weights.
(Inherited from Model.)
Top
Methods

  NameDescription
Public methodCompute Obsolete.
Computes the model.
(Inherited from Model.)
Public methodCompute(ParallelOptions) Obsolete.
Computes the model.
(Inherited from Model.)
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodFit
Fits the model to the data.
(Inherited from Model.)
Public methodFit(ParallelOptions)
Fits the model to the data.
(Inherited from Model.)
Protected methodFitCore
Computes the model to the specified input using the specified parallelization options.
(Inherited from Model.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodInverseTransform
Applies the inverse transformation to a set of observations.
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodResetComputation Obsolete.
Clears all fitted model parameters.
(Inherited from Model.)
Public methodResetFit
Clears all fitted model parameters.
(Inherited from Model.)
Public methodSetDataSource
Uses the specified data frame as the source for all input variables.
(Inherited from Model.)
Public methodSummarize
Returns a string containing a human-readable summary of the object using default options.
(Inherited from Model.)
Public methodSummarize(SummaryOptions)
Returns a string containing a human-readable summary of the object using the specified options.
(Inherited from Model.)
Public methodToString
Returns a string that represents the current object.
(Inherited from Model.)
Public methodTransform
Applies the transformation to a set of observations.
Top
Remarks

Use the TransformationModelT class as the base class for classes that represent data transformations based on the specified input data. Examples are Factor Analysis and Principal Component Analysis.

See Also

Reference

Extreme.DataAnalysis.Models Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.