Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.DataAnalysis
    • Accumulator(T, U) Class
    • Aggregator(T, U) Class
    • Aggregator2(T, U) Class
    • Aggregator2Group Class
    • Aggregator2Group(T) Class
    • AggregatorGroup Class
    • AggregatorGroup(T) Class
    • Aggregators Class
    • BoundaryIntervalBehavior Enumeration
    • CategoricalEncoding Class
    • DataFrame Class
    • DataFrame(R, C) Class
    • DataFrameRow(R, C) Class
    • DateTimeExtensions Class
    • DateTimeUnit Enumeration
    • Direction Enumeration
    • Grouping Class
    • Grouping(TKey) Class
    • Histogram Class
    • Histogram(T) Class
    • IAccumulator(T, U) Interface
    • IAccumulator2(T, U) Interface
    • IAccumulator2(T, U, V) Interface
    • IAggregator Interface
    • IAggregator(T) Interface
    • IAggregator2 Interface
    • IAggregator2(T) Interface
    • IDataFrame Interface
    • IGrouping Interface
    • IIndex Interface
    • Index Class
    • Index(T) Class
    • IntervalIndex(T) Class
    • IPivot Interface
    • JoinIndex Class
    • JoinType Enumeration
    • MissingValueAction Enumeration
    • MissingValueException Class
    • MultipleMissingValueAction Enumeration
    • Parameter(T) Class
    • ParameterVector(T) Class
    • Pivot Class
    • Pivot(R, C) Class
    • RankTiebreaker Enumeration
    • Recurrence Class
    • SortOrder Enumeration
    • SpecialBins Enumeration
    • Subset Class
    • TransformedParameter(T) Class
    • TypePreservingAggregatorGroup Class
    • VectorExtensions Class
  • Parameter(T) Class
    • Properties
    • Methods

ParameterT Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents a parameter in a statistical model.
Inheritance Hierarchy

SystemObject
  Extreme.DataAnalysisParameterT
    Extreme.DataAnalysisTransformedParameterT

Namespace:  Extreme.DataAnalysis
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public class Parameter<T>
Public Class Parameter(Of T)
generic<typename T>
public ref class Parameter
type Parameter<'T> =  class end

Type Parameters

T
The type of the value of the parameter.

The ParameterT type exposes the following members.

Properties

  NameDescription
Public propertyDistribution
Gets the distribution of the estimated value.
Public propertyName
Gets or sets the name of the parameter.
Public propertyPValue
Gets the probability that the estimated value is not zero.
Public propertyStandardError
Gets the standard error of the estimated value.
Public propertyStatistic
Gets the value of the statistic for this estimated value.
Public propertyValue
Gets the estimated value.
Public propertyVariable
Gets the independent Variable this ParameterT corresponds to.
Top
Methods

  NameDescription
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Public methodStatic memberExp
Returns an exponentially transformed parameter.
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetConfidenceInterval
Gets the confidence interval for the estimated value at the specified confidence level.
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetSignificanceTest
Returns a hypothesis test for the significance of the parameter value.
Public methodGetTTest
Returns a OneSampleTTest object that can be used to perform further analysis on the parameter.
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodStatic memberLog
Returns a log transformed parameter.
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodToString
Returns a string representation of this instance.
(Overrides ObjectToString.)
Top
Remarks

Use the ParameterT class to obtain more information about a parameter of a statistical model.

The ParameterT class defines properties, including Statistic and PValue, that give an indication of the importance of the contribution of the corresponding variable to the model. Confidence intervals for the parameter can be obtained using the GetConfidenceInterval(Double) method. Further information can be obtained through the OneSampleTTest returned by the GetTTest method.

ParameterT objects cannot be created directly. They are created by the statistical model and exposed through the model's Parameters collection.

See Also

Reference

Extreme.DataAnalysis Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.