Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.Curves
    • ChebyshevBasis Class
    • ChebyshevSeries Class
    • Constant Class
    • CubicSpline Class
    • CubicSplineKind Enumeration
    • Curve Class
    • CurveFitter Class
    • FunctionBasis Class
    • GeneralCurve Class
    • GeneralFunctionBasis Class
    • Line Class
    • LinearCombination Class
    • LinearCurveFitter Class
    • LinearLeastSquaresMethod Enumeration
    • NonlinearCurve Class
    • NonlinearCurveFitter Class
    • NonlinearCurveFitter(T) Class
    • NonlinearCurveFittingMethod Enumeration
    • ParameterCollection Class
    • PiecewiseConstantCurve Class
    • PiecewiseCurve Class
    • PiecewiseLinearCurve Class
    • Point Structure
    • Polynomial Class
    • PolynomialBase Class
    • PolynomialBasis Class
    • Quadratic Class
    • WeightFunctions Class
  • FunctionBasis Class
    • FunctionBasis Constructor
    • Properties
    • Methods
  • Methods
    • DerivativesAt Method
    • FillDerivatives Method Overloads
    • FillValues Method Overloads
    • GetFunction Method Overloads
    • LeastSquaresFit Method Overloads
    • ValuesAt Method
  • LeastSquaresFit Method Overloads
    • LeastSquaresFit Method (Vector(Double), Vector(Double))
    • LeastSquaresFit Method (Vector, Vector)
    • LeastSquaresFit Method (Double[], Double[], Double[])
    • LeastSquaresFit Method (Double[], Double[], Int32)
    • LeastSquaresFit Method (Vector(Double), Vector(Double), Vector(Double))
    • LeastSquaresFit Method (Vector, Vector, Vector)
  • LeastSquaresFit Method (Vector(Double), Vector(Double))
FunctionBasisLeastSquaresFit Method (VectorDouble, VectorDouble)Extreme Optimization Numerical Libraries for .NET Professional
Gets the least squares fit of target data in terms of the components of the FunctionBasis.

Namespace: Extreme.Mathematics.Curves
Assembly: Extreme.Numerics.Net40 (in Extreme.Numerics.Net40.dll) Version: 6.0.16073.0 (6.0.17114.0)
Syntax

C#
VB
C++
F#
Copy
public virtual LinearCombination LeastSquaresFit(
	Vector<double> xValues,
	Vector<double> yValues
)
Public Overridable Function LeastSquaresFit ( 
	xValues As Vector(Of Double),
	yValues As Vector(Of Double)
) As LinearCombination
public:
virtual LinearCombination^ LeastSquaresFit(
	Vector<double>^ xValues, 
	Vector<double>^ yValues
)
abstract LeastSquaresFit : 
        xValues : Vector<float> * 
        yValues : Vector<float> -> LinearCombination 
override LeastSquaresFit : 
        xValues : Vector<float> * 
        yValues : Vector<float> -> LinearCombination 

Parameters

xValues
Type: Extreme.MathematicsVectorDouble
A vector containing the data points for the fit.
yValues
Type: Extreme.MathematicsVectorDouble
A vector containing the data values corresponding to the data points in xValues.

Return Value

Type: LinearCombination
A LinearCombination that is the least squares fit of the data in terms of this FunctionBasis.
Exceptions

ExceptionCondition
ArgumentNullExceptionxValues is .

-or-

yValues is .

TotalLossOfPrecisionException The solution of the least squares problem could not be found because roundoff error caused a total loss of precision.
DimensionMismatchExceptionThe xValues and yValues do not have the same length.
ArgumentException The number of data points is less than the number of basis functions.
Version Information

Numerical Libraries

Supported in: 6.0
See Also

Reference

FunctionBasis Class
LeastSquaresFit Overload
Extreme.Mathematics.Curves Namespace

Copyright (c) 2004-2017 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.