Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.Curves
    • ChebyshevBasis Class
    • ChebyshevSeries Class
    • Constant Class
    • CubicSpline Class
    • CubicSplineKind Enumeration
    • Curve Class
    • CurveFitter Class
    • FunctionBasis Class
    • GeneralCurve Class
    • GeneralFunctionBasis Class
    • Line Class
    • LinearCombination Class
    • LinearCurveFitter Class
    • LinearLeastSquaresMethod Enumeration
    • NonlinearCurve Class
    • NonlinearCurveFitter Class
    • NonlinearCurveFitter(T) Class
    • NonlinearCurveFittingMethod Enumeration
    • ParameterCollection Class
    • PiecewiseConstantCurve Class
    • PiecewiseCurve Class
    • PiecewiseLinearCurve Class
    • Point Structure
    • Polynomial Class
    • PolynomialBase Class
    • PolynomialBasis Class
    • Quadratic Class
    • WeightFunctions Class
  • Line Class
    • Line Constructors
    • Properties
    • Methods
  • Methods
    • FindRoots Method
    • Integral Method
    • LeastSquaresFit Method
    • PassesBetween Method
    • SlopeAt Method
    • ValueAt Method
  • LeastSquaresFit Method
LineLeastSquaresFit Method Extreme Optimization Numerical Libraries for .NET Professional
Returns the Line that is the best least squares fit through the given set of points.

Namespace: Extreme.Mathematics.Curves
Assembly: Extreme.Numerics.Net40 (in Extreme.Numerics.Net40.dll) Version: 6.0.16073.0 (6.0.16312.0)
Syntax

C#
VB
C++
F#
Copy
public static Line LeastSquaresFit(
	double[] xValues,
	double[] yValues
)
Public Shared Function LeastSquaresFit ( 
	xValues As Double(),
	yValues As Double()
) As Line
public:
static Line^ LeastSquaresFit(
	array<double>^ xValues, 
	array<double>^ yValues
)
static member LeastSquaresFit : 
        xValues : float[] * 
        yValues : float[] -> Line 

Parameters

xValues
Type: SystemDouble
An array of numbers containing the X-coordinates of the points.
yValues
Type: SystemDouble
An array of numbers containing the Y-coordinates of the points.

Return Value

Type: Line
A Line that is the least squares fit through the given set of points.
Exceptions

ExceptionCondition
ArgumentNullExceptionxValues is .

-or-

yValues is .

DimensionMismatchException The arrays xValues and yValues have different lengths.
DivideByZeroExceptionThe least-squares line is vertical.
Remarks

The least squares fit of a line through a set of points is the line that minimizes the sum of the squares of the residuals. The residuals are the differences between the predicted and the actual values.

The coordinates of the points are provided in two Double arrays. These must have the same number of elements, or an exception is thrown.

In rare cases, the least squares line is vertical and the slope is infinite.In this case, a DivideByZeroException exception is thrown.

Version Information

Numerical Libraries

Supported in: 6.0, 5.x, 4.x
See Also

Reference

Line Class
Extreme.Mathematics.Curves Namespace

Copyright (c) 2004-2016 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.