Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.Curves
    • BarycentricBasis Class
    • BarycentricSeries Class
    • ChebyshevBasis Class
    • ChebyshevSeries Class
    • CubicSpline Class
    • CubicSplineKind Enumeration
    • Curve Class
    • CurveFitter Class
    • FunctionBasis Class
    • GeneralCurve Class
    • GeneralFunctionBasis Class
    • LinearCombination Class
    • LinearCurveFitter Class
    • LinearLeastSquaresMethod Enumeration
    • NonlinearCurve Class
    • NonlinearCurveFitter Class
    • NonlinearCurveFitter(T) Class
    • NonlinearCurveFittingMethod Enumeration
    • PiecewiseConstantCurve Class
    • PiecewiseCurve Class
    • PiecewiseLinearCurve Class
    • Point Structure
    • Polynomial Class
    • PolynomialBase Class
    • PolynomialBasis Class
    • WeightFunctions Class
  • WeightFunctions Class
    • WeightFunctions Constructor
    • Methods
    • Fields

WeightFunctions Class

Extreme Optimization Numerical Libraries for .NET Professional
Contains a set of standard weight functions that can be used in linear and nonlinear curve fitting.
Inheritance Hierarchy

SystemObject
  Extreme.Mathematics.CurvesWeightFunctions

Namespace:  Extreme.Mathematics.Curves
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public abstract class WeightFunctions
Public MustInherit Class WeightFunctions
public ref class WeightFunctions abstract
[<AbstractClassAttribute>]
type WeightFunctions =  class end

The WeightFunctions type exposes the following members.

Constructors

  NameDescription
Protected methodWeightFunctions
Initializes a new instance of the WeightFunctions class
Top
Methods

  NameDescription
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodStatic memberGetBisquareWeightVectorFromErrors(VectorDouble)
Returns a weight vector corresponding to the supplied error values using Tukey's bisquare estimator.
Public methodStatic memberGetBisquareWeightVectorFromErrors(VectorDouble, Double)
Returns a weight vector corresponding to the supplied error values using Tukey's bisquare estimator.
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodStatic memberGetHuberWeightVectorFromErrors(VectorDouble)
Returns a weight vector corresponding to the supplied error values using Huber's M-estimator.
Public methodStatic memberGetHuberWeightVectorFromErrors(VectorDouble, Double)
Returns a weight vector corresponding to the supplied error values using Huber's M-estimator.
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodStatic memberGetWeightVectorFromErrors
Returns a weight vector corresponding to the supplied error values.
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Top
Fields

  NameDescription
Public fieldStatic memberNone
There is no weight function. All weights are assumed to be equal.
Public fieldStatic memberOneOverX
The weight is equal to the reciprocal of the x-value.
Public fieldStatic memberOneOverXSquared
The weight is equal to the reciprocal of the square of the x-value.
Public fieldStatic memberOneOverY
The weight is equal to the reciprocal of the y-value.
Public fieldStatic memberOneOverYSquared
The weight is equal to the reciprocal of the square of the y-value.
Top
Remarks

A weight function is a function that takes two parameters: the X and Y values of an observation, and returns the weight associated with that observation. The function is encapsulated in a function of two variables delegate.

The WeightFunctions class defines a set of commonly used weight functions for use in linear and nonlinear least squares fitting.

See Also

Reference

Extreme.Mathematics.Curves Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.