Finds a zero of a function starting from an initial guess.
Namespace: Extreme.MathematicsAssembly: Extreme.Numerics.Net40 (in Extreme.Numerics.Net40.dll) Version: 6.0.16073.0 (6.0.16312.0)
public static EquationSystemSolver GetEquationSolver(
this Func<Vector<double>, double>[] targetFunctions,
Func<Vector<double>, Vector<double>, Vector<double>>[] gradientsOfTargetFunctions,
Vector<double> initialGuess
)
<ExtensionAttribute>
Public Shared Function GetEquationSolver (
targetFunctions As Func(Of Vector(Of Double), Double)(),
gradientsOfTargetFunctions As Func(Of Vector(Of Double), Vector(Of Double), Vector(Of Double))(),
initialGuess As Vector(Of Double)
) As EquationSystemSolver
public:
[ExtensionAttribute]
static EquationSystemSolver^ GetEquationSolver(
array<Func<Vector<double>^, double>^>^ targetFunctions,
array<Func<Vector<double>^, Vector<double>^, Vector<double>^>^>^ gradientsOfTargetFunctions,
Vector<double>^ initialGuess
)
[<ExtensionAttribute>]
static member GetEquationSolver :
targetFunctions : Func<Vector<float>, float>[] *
gradientsOfTargetFunctions : Func<Vector<float>, Vector<float>, Vector<float>>[] *
initialGuess : Vector<float> -> EquationSystemSolver
Parameters
- targetFunctions
- Type: SystemFuncVectorDouble, Double
A delegate that represents a multivariate function returning a vector that specifies the function on the left-hand
side of the equation. - gradientsOfTargetFunctions
- Type: SystemFuncVectorDouble, VectorDouble, VectorDouble
A delegate that represents a multivariate function that specifies the gradient
function of targetFunctions. - initialGuess
- Type: Extreme.MathematicsVectorDouble
An initial guess for ther zero.
Return Value
Type:
EquationSystemSolverThe best approximation to a zero of
targetFunctions.
Usage Note
In Visual Basic and C#, you can call this method as an instance method on any object of type . When you use instance method syntax to call this method, omit the first parameter. For more information, see
Extension Methods (Visual Basic) or
Extension Methods (C# Programming Guide).
Use this method when you have very little information about the location of the zero, but you need more control
over the solution process. For example, you may want to specify a different RelativeTolerance.
Numerical Libraries
Supported in: 6.0
Reference