Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.Generic.LinearAlgebra
    • BandMatrix(T) Class
    • BandVector(T) Class
    • BandVector(T).BandVectorEnumerator Structure
    • CholeskyDecomposition(T) Class
    • ColumnCollection(T) Structure
    • ComplexSingularValueDecomposition(T) Class
    • ComposedComplexMatrix(T) Class
    • ComposedComplexVector(T) Class
    • ConstantMatrix(T) Class
    • ConstantVector(T) Class
    • Decomposition(T) Class
    • DenseMatrix(T) Class
    • DenseVector(T) Class
    • DiagonalMatrix(T) Class
    • EigenvalueDecomposition(T) Class
    • GenericKernel(T) Class
    • GenericKernel(T).Specialization Class
    • HermitianMatrix(T) Class
    • ILinearStorage(T) Interface
    • IndefiniteDecomposition(T) Class
    • IndexedVector(T) Class
    • IndexValuePair(T) Structure
    • IResizableMatrix(T) Interface
    • LinearOperator(T) Class
    • LUDecomposition(T) Class
    • MatrixView(T) Class
    • NonHermitianEigenvalueDecomposition(T) Class
    • NonsymmetricEigenvalueDecomposition(T) Class
    • QRDecomposition(T) Class
    • RowCollection(T) Structure
    • RowColumnValueTriplet(T) Structure
    • SingularValueDecomposition(T) Class
    • SparseCompressedColumnMatrix(T) Class
    • SparseMatrix(T) Class
    • SparseVector(T) Class
    • SymmetricEigenvalueDecomposition(T) Class
    • SymmetricMatrix(T) Class
    • TriangularMatrix(T) Class
  • DenseVector(T) Class
    • DenseVector(T) Constructors
    • Properties
    • Methods
    • Operators and Type Conversions
  • DenseVector(T) Constructors
    • DenseVector(T) Constructor (Int32)
    • DenseVector(T) Constructor (T[])
    • DenseVector(T) Constructor (Int32, Func(Int32, T))
    • DenseVector(T) Constructor (Int32, T[])
    • DenseVector(T) Constructor (T[], Boolean)
    • DenseVector(T) Constructor (Int32, T[], Boolean)
    • DenseVector(T) Constructor (Int32, T[], Int32, Int32)
  • DenseVector(T) Constructor (Int32, T[], Boolean)
DenseVectorT Constructor (Int32, T, Boolean)Extreme Optimization Numerical Libraries for .NET Professional

Note: This API is now obsolete.

Constructs a new dense vector with the specified components.

Namespace: Extreme.Mathematics.Generic.LinearAlgebra
Assembly: Extreme.Numerics.Net40 (in Extreme.Numerics.Net40.dll) Version: 6.0.16073.0 (6.0.17114.0)
Syntax

C#
VB
C++
F#
Copy
[ObsoleteAttribute("Use the corresponding Vector<T>.Create() method instead.")]
public DenseVector(
	int length,
	T[] values,
	bool reuseComponentArray
)
<ObsoleteAttribute("Use the corresponding Vector<T>.Create() method instead.")>
Public Sub New ( 
	length As Integer,
	values As T(),
	reuseComponentArray As Boolean
)
public:
[ObsoleteAttribute(L"Use the corresponding Vector<T>.Create() method instead.")]
DenseVector(
	int length, 
	array<T>^ values, 
	bool reuseComponentArray
)
[<ObsoleteAttribute("Use the corresponding Vector<T>.Create() method instead.")>]
new : 
        length : int * 
        values : 'T[] * 
        reuseComponentArray : bool -> DenseVector

Parameters

length
Type: SystemInt32
The number of elements in the new vector.
values
Type: T
An array that contains the components of the new DenseVectorT.
reuseComponentArray
Type: SystemBoolean
If , the array referenced by values is used directly. Any changes to the components of this DenseVectorT will also affect the original array. If , the components are copied from values to a new array.
Exceptions

ExceptionCondition
ArgumentNullExceptionvalues is
ArgumentOutOfRangeException

length is less than zero.

-or-

The length of values is less than length.

Version Information

Numerical Libraries

Supported in: 4.x
Obsolete (compiler warning) in 5.x
See Also

Reference

DenseVectorT Class
DenseVectorT Overload
Extreme.Mathematics.Generic.LinearAlgebra Namespace

Copyright (c) 2004-2017 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.