Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • DefaultBlasLevel1(T) Class
    • DefaultBlasLevel2(T) Class
    • DefaultBlasLevel3(T) Class
    • IBlasLevel1(T) Interface
    • IBlasLevel2(T) Interface
    • IBlasLevel3(T) Interface
    • ILapack(T) Interface
  • ILapack(T) Interface
    • Methods
  • Methods
    • Gbcon Method
    • Gbtrf Method
    • Gbtrs Method
    • Gecon Method
    • Geev Method
    • Geqrf Method
    • Gesdd Method
    • Getrf Method
    • Getri Method
    • Getrs Method
    • Lacpy Method
    • Lange Method
    • Lantr Method
    • Ormqr Method
    • Pbcon Method
    • Pbtrf Method
    • Pbtrs Method
    • Pocon Method
    • Potrf Method
    • Potri Method
    • Potrs Method
    • Syevd Method
    • Tbtrs Method
    • Trcon Method
    • Trtri Method
    • Trtrs Method
  • Geqrf Method
ILapackTGeqrf Method Extreme Optimization Numerical Libraries for .NET Professional
DGEQRF computes a QR decomposition of a real M-by-N matrix A: A = Q * R. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,N). For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit inthis. A(i+1:m,i), and tau inthis. TAU(i).

Namespace: Extreme.Mathematics.Generic.LinearAlgebra.Providers
Assembly: Extreme.Numerics.Version4x.Net40 (in Extreme.Numerics.Version4x.Net40.dll) Version: 4.2.11333.0 (5.0.12317.0)
Syntax

C#
VB
C++
F#
Copy
void Geqrf(
	int m,
	int n,
	T[] a,
	int aOffset,
	int lda,
	T[] tau,
	int tauOffset,
	out int info
)
Sub Geqrf ( 
	m As Integer,
	n As Integer,
	a As T(),
	aOffset As Integer,
	lda As Integer,
	tau As T(),
	tauOffset As Integer,
	<OutAttribute> ByRef info As Integer
)
void Geqrf(
	int m, 
	int n, 
	array<T>^ a, 
	int aOffset, 
	int lda, 
	array<T>^ tau, 
	int tauOffset, 
	[OutAttribute] int% info
)
abstract Geqrf : 
        m : int * 
        n : int * 
        a : 'T[] * 
        aOffset : int * 
        lda : int * 
        tau : 'T[] * 
        tauOffset : int * 
        info : int byref -> unit 

Parameters

m
Type: SystemInt32
n
Type: SystemInt32
a
Type: T
aOffset
Type: SystemInt32
lda
Type: SystemInt32
tau
Type: T
tauOffset
Type: SystemInt32
info
Type: SystemInt32
Version Information

Numerical Libraries

Supported in: 5.x, 4.x
See Also

Reference

ILapackT Interface
Extreme.Mathematics.Generic.LinearAlgebra.Providers Namespace

Copyright (c) 2004-2016 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.