Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.Generic.LinearAlgebra
    • BandMatrix(T) Class
    • BandVector(T) Class
    • BandVector(T).BandVectorEnumerator Structure
    • CholeskyDecomposition(T) Class
    • ColumnCollection(T) Structure
    • ComplexSingularValueDecomposition(T) Class
    • ComposedComplexMatrix(T) Class
    • ComposedComplexVector(T) Class
    • ConstantMatrix(T) Class
    • ConstantVector(T) Class
    • Decomposition(T) Class
    • DenseMatrix(T) Class
    • DenseVector(T) Class
    • DiagonalMatrix(T) Class
    • EigenvalueDecomposition(T) Class
    • GenericKernel(T) Class
    • GenericKernel(T).Specialization Class
    • HermitianMatrix(T) Class
    • ILinearStorage(T) Interface
    • IndefiniteDecomposition(T) Class
    • IndexedVector(T) Class
    • IndexValuePair(T) Structure
    • IResizableMatrix(T) Interface
    • LinearOperator(T) Class
    • LUDecomposition(T) Class
    • MatrixView(T) Class
    • NonHermitianEigenvalueDecomposition(T) Class
    • NonsymmetricEigenvalueDecomposition(T) Class
    • QRDecomposition(T) Class
    • RowCollection(T) Structure
    • RowColumnValueTriplet(T) Structure
    • SingularValueDecomposition(T) Class
    • SparseCompressedColumnMatrix(T) Class
    • SparseMatrix(T) Class
    • SparseVector(T) Class
    • SymmetricEigenvalueDecomposition(T) Class
    • SymmetricMatrix(T) Class
    • TriangularMatrix(T) Class
  • SymmetricMatrix(T) Class
    • SymmetricMatrix(T) Constructors
    • Properties
    • Methods
  • SymmetricMatrix(T) Constructors
    • SymmetricMatrix(T) Constructor (Int32)
    • SymmetricMatrix(T) Constructor (Int32, T[], MatrixTriangle)
    • SymmetricMatrix(T) Constructor (Int32, T[], MatrixTriangle, Boolean)
  • SymmetricMatrix(T) Constructor (Int32)
SymmetricMatrixT Constructor (Int32)Extreme Optimization Numerical Libraries for .NET Professional

Note: This API is now obsolete.

Constructs a new symmetric matrix with the specified dimension.

Namespace: Extreme.Mathematics.Generic.LinearAlgebra
Assembly: Extreme.Numerics.Net40 (in Extreme.Numerics.Net40.dll) Version: 6.0.16073.0 (6.0.17114.0)
Syntax

C#
VB
C++
F#
Copy
[ObsoleteAttribute("Use the corresponding Matrix<T>.CreateSymmetric() method instead.")]
public SymmetricMatrix(
	int dimension
)
<ObsoleteAttribute("Use the corresponding Matrix<T>.CreateSymmetric() method instead.")>
Public Sub New ( 
	dimension As Integer
)
public:
[ObsoleteAttribute(L"Use the corresponding Matrix<T>.CreateSymmetric() method instead.")]
SymmetricMatrix(
	int dimension
)
[<ObsoleteAttribute("Use the corresponding Matrix<T>.CreateSymmetric() method instead.")>]
new : 
        dimension : int -> SymmetricMatrix

Parameters

dimension
Type: SystemInt32
The number of rows and columns in the new SymmetricMatrixT.
Version Information

Numerical Libraries

Supported in: 4.x
Obsolete (compiler warning) in 5.x
See Also

Reference

SymmetricMatrixT Class
SymmetricMatrixT Overload
Extreme.Mathematics.Generic.LinearAlgebra Namespace

Copyright (c) 2004-2017 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.