Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics
    • AccuracyGoal Structure
    • AlgorithmStatus Enumeration
    • ArrayAttributes Structure
    • ArrayMath Class
    • ArrayMutability Enumeration
    • BigFloat Class
    • BigInteger Structure
    • BigRational Structure
    • CategoricalVector(T) Class
    • Complex(T) Structure
    • Constants Class
    • ConvergenceCriterion Enumeration
    • CoreImplementations(T) Class
    • DecimalMath Class
    • Dimension Enumeration
    • DimensionMismatchException Class
    • DimensionType Enumeration
    • DistributedDataLocation Enumeration
    • DoubleComparer Class
    • Elementary Class
    • ElementType(T) Class
    • FunctionMath Class
    • FunctionWithDerivative Delegate
    • GenericCoreProvider(T) Class
    • GenericImplementations Class
    • ICategoricalVector Interface
    • IDistributed Interface
    • InsufficientDataException Class
    • IntegerMath Class
    • Intent Enumeration
    • Interval Structure
    • Interval(T) Structure
    • IPermutable Interface
    • ISummarizable Interface
    • Iterators Class
    • IVector Interface
    • MachineConstants Class
    • ManagedCoreProviderOfSingle Class
    • Math(T) Class
    • Matrix Class
    • Matrix(T) Class
    • MatrixDiagonal Enumeration
    • MatrixElementOrder Enumeration
    • MatrixExtensions Class
    • MatrixNorm Enumeration
    • MatrixOperationSide Enumeration
    • MatrixStructure Enumeration
    • MatrixTriangle Enumeration
    • MutabilityBehaviour Enumeration
    • NumericsConfiguration Class
    • Operations(T) Class
    • Permutation Class
    • Quad Structure
    • RandomExtensions Class
    • Range Structure
    • RoundingMode Enumeration
    • SingleConstants Class
    • SinglePrecisionImplementations Class
    • Slice Structure
    • SolutionReport(T) Class
    • SolutionReport(T, TError) Class
    • Special Class
    • SummaryOptions Class
    • SymbolicMath Class
    • TotalLossOfPrecisionException Class
    • TransposeOperation Enumeration
    • TypedVectorWrapper(K, T) Structure
    • Vector Class
    • Vector(T) Class
    • VectorExtensions Class
  • ICategoricalVector Interface
    • Properties
    • Methods
  • Methods
    • WithCategories(T) Method

ICategoricalVector Methods

Extreme Optimization Numerical Libraries for .NET Professional

The ICategoricalVector type exposes the following members.

Methods

  NameDescription
Public methodAggregateIntoT, U(VectorT, AggregatorT, U, VectorU)
Aggregates the specified vector over each group and returns the result.
(Inherited from IGrouping.)
Public methodAggregateIntoT, U(VectorT, VectorT, Aggregator2T, U, VectorU)
Aggregates the specified vector over each group and returns the result.
(Inherited from IGrouping.)
Public methodAppend
Appends a vector at the end of this vector and returns the result.
(Inherited from IVector.)
Public methodAppendMissingValues
Appends the specified number of missing values to this vector and returns the result.
(Inherited from IVector.)
Public methodAsU
Returns the object as a strongly typed vector of the specified type.
(Inherited from IVector.)
Public methodAsCategorical
Converts the vector to a categorical vector.
(Inherited from IVector.)
Public methodGetCounts
Returns a histogram of the number of observations in each group.
(Inherited from IGrouping.)
Public methodGetIndexes
Gets a sequence of indexes for the grouping.
(Inherited from IGrouping.)
Public methodGetSlice
Returns a new object that contains the values at the specified positions.
(Inherited from IVector.)
Public methodGetValue
Gets the value at the specified index.
(Inherited from IVector.)
Public methodGetValues(IEnumerableInt32)
Returns a new object that contains the values at the specified positions.
(Inherited from IVector.)
Public methodGetValues(Int32)
Returns a new object that contains the values at the specified positions.
(Inherited from IVector.)
Public methodIsMissing
Indicates whether the value at the specified index is missing.
(Inherited from IVector.)
Public methodProtect
Returns a shallow read-only copy of the vector.
(Inherited from IVector.)
Public methodReplaceMissingValues
Replaces all missing values in a vector with the previous or next non-missing value.
(Inherited from IVector.)
Public methodSort
Returns a permutation that can be used to sort the data in the vector in the specified order.
(Inherited from IVector.)
Public methodWithCategoriesT
Constructs a new categorical vector using the specified category index.
Top
Extension Methods

  NameDescription
Public Extension MethodBinT(IntervalIndexT)Overloaded.
Sorts values into bins and returns the result as a categorical vector.
(Defined by Vector.)
Public Extension MethodBinT(IListT, SpecialBins)Overloaded.
Sorts values into bins and returns the result as a categorical vector.
(Defined by Vector.)
Public Extension MethodCreateHistogram
Returns a histogram of the counts for each value in a vector.
(Defined by Histogram.)
Public Extension MethodUnstackR, C
Transforms a vector with a two-level index into a data frame whose columns correspond to the second level in the index.
(Defined by DataFrame.)
Public Extension MethodUseBackwardDifferenceEncoding
Specifies that backward difference encoding should be used when creating indicator variables.
(Defined by VectorExtensions.)
Public Extension MethodUseDeviationEncoding
Specifies that deviance encoding should be used when creating indicator variables.
(Defined by VectorExtensions.)
Public Extension MethodUseDummyEncoding
Specifies that dummy encoding (also called treatment encoding) should be used when creating indicator variables.
(Defined by VectorExtensions.)
Public Extension MethodUseForwardDifferenceEncoding
Specifies that forward difference encoding should be used when creating indicator variables.
(Defined by VectorExtensions.)
Public Extension MethodUseHelmertEncoding
Specifies that Helmert encoding should be used when creating indicator variables.
(Defined by VectorExtensions.)
Public Extension MethodUseInverseHelmertEncoding
Specifies that inverse Helmert encoding should be used when creating indicator variables.
(Defined by VectorExtensions.)
Public Extension MethodUsePolynomialEncoding
Specifies that orthogonal polynomial encoding should be used when creating indicator variables.
(Defined by VectorExtensions.)
Public Extension MethodUseSimpleEncoding
Specifies that simple encoding should be used when creating indicator variables.
(Defined by VectorExtensions.)
Top
See Also

Reference

ICategoricalVector Interface
Extreme.Mathematics Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.