Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.LinearAlgebra.Implementation
    • DecompositionOperations(T) Class
    • DecompositionOperations(TReal, TComplex) Class
    • GenericDecompositionOperations(T) Class
    • GenericLinearAlgebraOperations(T) Class
    • GenericSparseLinearAlgebraOperations(T) Class
    • IArrayFunctions(T, TShape, TArray) Interface
    • ILinearAlgebraOperations(T) Interface
    • ILinearAlgebraOperations(T, TVector, TMatrix) Interface
    • ISparseLinearAlgebraOperations(T) Interface
    • IVectorFunctions(T) Interface
    • LinearAlgebraOperations(T) Class
    • ManagedArrayFunctions Class
    • ManagedArrayFunctions(T) Class
    • ManagedArrayFunctionsOfSingle Class
    • ManagedLapack Class
    • ManagedLapackOfSingle Class
    • ManagedLinearAlgebraOperations Class
    • ManagedLinearAlgebraOperationsOfSingle Class
    • ManagedSparseLinearAlgebraOperations Class
    • ManagedSparseLinearAlgebraOperationsOfSingle Class
    • SparseLinearAlgebraOperations Class
    • SparseLinearAlgebraOperations(T) Class
    • SparseLinearAlgebraOperationsOfSingle Class
  • LinearAlgebraOperations(T) Class
    • LinearAlgebraOperations(T) Constructor
    • Properties
    • Methods
  • Methods
    • AbsoluteMaxIndex Method Overloads
    • ApplyModifiedGivensRotation Method
    • BandMultiplyAndAddInPlace Method Overloads
    • BandSymmetricMultiplyAndAddInPlace Method
    • BandTriangularMultiplyInPlace Method Overloads
    • BandTriangularSolveInPlace Method Overloads
    • ComplexOneNorm Method
    • ConjugateDotProduct Method Overloads
    • ConjugateRankUpdate Method Overloads
    • Copy Method Overloads
    • CreateGivensRotation Method Overloads
    • CreateModifiedGivensRotation Method
    • DotProduct Method Overloads
    • FullMatrixNorm Method Overloads
    • HermitianMatrixNorm Method Overloads
    • HermitianMultiplyAndAddInPlace Method Overloads
    • HermitianRankUpdate Method Overloads
    • MultiplyAndAddInPlace Method Overloads
    • MultiplyInPlace Method Overloads
    • OneNorm Method
    • RankUpdate Method Overloads
    • RealOneNorm Method Overloads
    • Rotate Method Overloads
    • Swap Method Overloads
    • SymmetricMatrixNorm Method Overloads
    • SymmetricMultiplyAndAddInPlace Method Overloads
    • SymmetricRankUpdate Method Overloads
    • TriangularMatrixNorm Method Overloads
    • TriangularMultiplyInPlace Method Overloads
    • TriangularSolveInPlace Method Overloads
    • TwoNorm Method Overloads
  • SymmetricMatrixNorm Method Overloads
    • SymmetricMatrixNorm Method (MatrixNorm, MatrixTriangle, Int32, Array2D(Complex(T)))
    • SymmetricMatrixNorm Method (MatrixNorm, MatrixTriangle, Int32, Array2D(T))
  • SymmetricMatrixNorm Method (MatrixNorm, MatrixTriangle, Int32, Array2D(T))
LinearAlgebraOperationsTSymmetricMatrixNorm Method (MatrixNorm, MatrixTriangle, Int32, Array2DT)Extreme Optimization Numerical Libraries for .NET Professional

Returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix A.

Namespace: Extreme.Mathematics.LinearAlgebra.Implementation
Assembly: Extreme.Numerics.Net40 (in Extreme.Numerics.Net40.dll) Version: 6.0.16073.0 (6.0.16312.0)
Syntax

C#
VB
C++
F#
Copy
public abstract T SymmetricMatrixNorm(
	MatrixNorm norm,
	MatrixTriangle storedTriangle,
	int n,
	Array2D<T> a
)
Public MustOverride Function SymmetricMatrixNorm ( 
	norm As MatrixNorm,
	storedTriangle As MatrixTriangle,
	n As Integer,
	a As Array2D(Of T)
) As T
public:
virtual T SymmetricMatrixNorm(
	MatrixNorm norm, 
	MatrixTriangle storedTriangle, 
	int n, 
	Array2D<T> a
) abstract
abstract SymmetricMatrixNorm : 
        norm : MatrixNorm * 
        storedTriangle : MatrixTriangle * 
        n : int * 
        a : Array2D<'T> -> 'T 

Parameters

norm
Type: Extreme.MathematicsMatrixNorm
            Specifies the value to be returned in DLANSY as described
            above.
            
storedTriangle
Type: Extreme.MathematicsMatrixTriangle
            Specifies whether the upper or lower triangular part of the
            symmetric matrix A is to be referenced.
            = 'U':  Upper triangular part of A is referenced
            = 'L':  Lower triangular part of A is referenced
            
n
Type: SystemInt32
            The order of the matrix A.  N >= 0.  When N = 0, DLANSY is
            set to zero.
            
a
Type: Extreme.CollectionsArray2DT
            Dimension (LDA,N)
            The symmetric matrix A.  If UPLO = 'U', the leading n by n
            upper triangular part of A contains the upper triangular part
            of the matrix A, and the strictly lower triangular part of A
            is not referenced.  If UPLO = 'L', the leading n by n lower
            triangular part of A contains the lower triangular part of
            the matrix A, and the strictly upper triangular part of A is
            not referenced.
            
            The leading dimension of the array A.  LDA >= max(N,1).
            

Return Value

Type: T

Implements

ILinearAlgebraOperationsTSymmetricMatrixNorm(MatrixNorm, MatrixTriangle, Int32, Array2DT)
Remarks

            DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                     (
                     ( norm1(A),         NORM = '1', 'O' or 'o'
                     (
                     ( normI(A),         NORM = 'I' or 'i'
                     (
                     ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
            ere  norm1  denotes the  one norm of a matrix (maximum column sum),
            ormI  denotes the  infinity norm  of a matrix  (maximum row sum) and
            normF  denotes the  Frobenius norm of a matrix (square root of sum of
            squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
            

This method corresponds to the LAPACK routine DLANSY.

Version Information

Numerical Libraries

Supported in: 6.0
See Also

Reference

LinearAlgebraOperationsT Class
SymmetricMatrixNorm Overload
Extreme.Mathematics.LinearAlgebra.Implementation Namespace

Copyright (c) 2004-2016 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.