Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.LinearAlgebra.Implementation
    • DecompositionOperations(T) Class
    • DecompositionOperations(TReal, TComplex) Class
    • GenericDecompositionOperations(T) Class
    • GenericLinearAlgebraOperations(T) Class
    • GenericSparseLinearAlgebraOperations(T) Class
    • IArrayFunctions(T, TShape, TArray) Interface
    • ILinearAlgebraOperations(T) Interface
    • ILinearAlgebraOperations(T, TVector, TMatrix) Interface
    • ISparseLinearAlgebraOperations(T) Interface
    • IVectorFunctions(T) Interface
    • LinearAlgebraOperations(T) Class
    • ManagedArrayFunctions Class
    • ManagedArrayFunctions(T) Class
    • ManagedArrayFunctionsOfSingle Class
    • ManagedLapack Class
    • ManagedLapackOfSingle Class
    • ManagedLinearAlgebraOperations Class
    • ManagedLinearAlgebraOperationsOfSingle Class
    • ManagedSparseLinearAlgebraOperations Class
    • ManagedSparseLinearAlgebraOperationsOfSingle Class
    • SparseLinearAlgebraOperations Class
    • SparseLinearAlgebraOperations(T) Class
    • SparseLinearAlgebraOperationsOfSingle Class
  • ManagedLapackOfSingle Class
    • Properties
    • Methods
  • Methods
    • BandCholeskyDecompose Method Overloads
    • BandCholeskyEstimateCondition Method Overloads
    • BandCholeskySolve Method Overloads
    • BandLUDecompose Method Overloads
    • BandLUEstimateCondition Method Overloads
    • BandLUSolve Method Overloads
    • BandTriangularSolve Method
    • CholeskyDecompose Method Overloads
    • CholeskyEstimateCondition Method Overloads
    • CholeskyInvert Method Overloads
    • CholeskySolve Method Overloads
    • EigenvalueDecompose Method Overloads
    • GeneralizedEigenvalueDecompose Method Overloads
    • GeneralizedSingularValueDecompose Method Overloads
    • HermitianDecompose Method
    • HermitianEigenvalueDecompose Method
    • HermitianEstimateCondition Method
    • HermitianGeneralizedEigenvalueDecompose Method
    • HermitianInvert Method
    • HermitianSolve Method
    • LQDecompose Method Overloads
    • LQOrthogonalMultiply Method
    • LQUnitaryMultiply Method
    • LUDecompose Method Overloads
    • LUEstimateCondition Method Overloads
    • LUInvert Method Overloads
    • LUSolve Method Overloads
    • QLDecompose Method Overloads
    • QLOrthogonalMultiply Method
    • QLUnitaryMultiply Method
    • QRDecompose Method Overloads
    • QROrthogonalMultiply Method
    • QRUnitaryMultiply Method
    • RQDecompose Method Overloads
    • RQOrthogonalMultiply Method
    • RQUnitaryMultiply Method
    • SingularValueDecompose Method Overloads
    • SymmetricDecompose Method
    • SymmetricEigenvalueDecompose Method
    • SymmetricEstimateCondition Method
    • SymmetricGeneralizedEigenvalueDecompose Method
    • SymmetricInvert Method
    • SymmetricSolve Method
    • TriangularEstimateCondition Method Overloads
    • TriangularInvert Method Overloads
    • TriangularSolve Method Overloads
  • LUInvert Method Overloads
    • LUInvert Method (Int32, Array2D(Complex(Single)), Array1D(Int32), Int32)
    • LUInvert Method (Int32, Array2D(Single), Array1D(Int32), Int32)
  • LUInvert Method (Int32, Array2D(Complex(Single)), Array1D(Int32), Int32)
ManagedLapackOfSingleLUInvert Method (Int32, Array2DComplexSingle, Array1DInt32, Int32)Extreme Optimization Numerical Libraries for .NET Professional
ZGETRI computes the inverse of a matrix using the LU decomposition computed by ZGETRF. This method inverts U and then computes inv(A) by solving the system inv(A)*L = inv(U) for inv(A). Arguments ========= N (input) INTEGER The elementOrder of the matrix A. N >= 0. A (input/output) ZOUBLE PRECISION array, dimension (LDA,N) On entry, the factors L and U from the decomposition A = P*L*U as computed by ZGETRF. On exit, if INFO = 0, the inverse of the original matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= Max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indexes from ZGETRF; for 1< =i< =N, row i of the matrix was interchanged with row IPIVi. WORK (workspace/output) ZOUBLE PRECISION array, dimension (LWORK) On exit, if INFO =0, then WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= Max(1,N). For optimal performance LWORK >= N*NB, where NB is the optimal blocksize returned by ILAENV. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero; the matrix is singular and its inverse could not be computed.

Namespace: Extreme.Mathematics.LinearAlgebra.Implementation
Assembly: Extreme.Numerics.SinglePrecision.Net40 (in Extreme.Numerics.SinglePrecision.Net40.dll) Version: 6.0.16073.0 (6.0.16355.0)
Syntax

C#
VB
C++
F#
Copy
public override void LUInvert(
	int n,
	Array2D<Complex<float>> a,
	Array1D<int> ipiv,
	out int info
)
Public Overrides Sub LUInvert ( 
	n As Integer,
	a As Array2D(Of Complex(Of Single)),
	ipiv As Array1D(Of Integer),
	<OutAttribute> ByRef info As Integer
)
public:
virtual void LUInvert(
	int n, 
	Array2D<Complex<float>> a, 
	Array1D<int> ipiv, 
	[OutAttribute] int% info
) override
abstract LUInvert : 
        n : int * 
        a : Array2D<Complex<float32>> * 
        ipiv : Array1D<int> * 
        info : int byref -> unit 
override LUInvert : 
        n : int * 
        a : Array2D<Complex<float32>> * 
        ipiv : Array1D<int> * 
        info : int byref -> unit 

Parameters

n
Type: SystemInt32
a
Type: Extreme.CollectionsArray2DComplexSingle
ipiv
Type: Extreme.CollectionsArray1DInt32
info
Type: SystemInt32
Version Information

Numerical Libraries

Supported in: 6.0
See Also

Reference

ManagedLapackOfSingle Class
LUInvert Overload
Extreme.Mathematics.LinearAlgebra.Implementation Namespace

Copyright (c) 2004-2017 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.