Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.Optimization
    • BoundedQuasiNewtonOptimizer Class
    • BrentDerivativeOptimizer Class
    • BrentOptimizer Class
    • ConjugateGradientMethod Enumeration
    • ConjugateGradientOptimizer Class
    • Constraint Class
    • ConstraintCollection Class
    • ConstraintType Enumeration
    • DecisionVariable Class
    • DecisionVariableCollection Class
    • DirectionalOptimizer Class
    • ExtremumType Enumeration
    • GoldenSectionOptimizer Class
    • LeastSquaresOptimizer Class
    • LevenbergMarquardtOptimizer Class
    • LimitedMemoryBfgsOptimizer Class
    • LinearConstraint Class
    • LinearProgram Class
    • LinearProgramConstraint Class
    • LinearProgramSolver Class
    • LinearProgramVariable Class
    • MpsReader Class
    • MultidimensionalOptimizer Class
    • NelderMeadOptimizer Class
    • NonlinearConstraint Class
    • NonlinearProgram Class
    • OneDimensionalOptimizer Class
    • OptimizationModel Class
    • OptimizationModelEntity Class
    • OptimizationModelSolver(T) Class
    • OptimizationModelStatus Enumeration
    • OptimizationSolutionReport Class
    • PowellOptimizer Class
    • QuadraticProgram Class
    • QuasiNewtonMethod Enumeration
    • QuasiNewtonOptimizer Class
    • TrustRegionReflectiveOptimizer Class
  • LeastSquaresOptimizer Class
    • LeastSquaresOptimizer Constructor
    • Properties
    • Methods
  • Methods
    • FindMinimum Method
    • GetVarianceCovarianceMatrix Method
    • OnConvergence Method
    • OnInit Method
    • SetMinimumValue Method
    • SetSymbolicObjectiveFunction Method Overloads

LeastSquaresOptimizer Methods

Extreme Optimization Numerical Libraries for .NET Professional

The LeastSquaresOptimizer type exposes the following members.

Methods

  NameDescription
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodFindMinimum
Runs the Levenberg-Marquardt algorithm and returns the result.
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Protected methodGetVarianceCovarianceMatrix
Computes the variance-covariance matrix of the solution.
Protected methodIncrementEvaluations
Increments the number of evaluations by one.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodIncrementEvaluations(Int32)
Increments the number of evaluations by the specified amount.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodIterate
Performs one iteration of the algorithm.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodIterated
Performs tasks after the iteration is completed, but before the status of the algorithm is finalized.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Protected methodOnConvergence
Performs any tasks after the main algorithm has converged.
(Overrides ManagedIterativeAlgorithmT, TError, TReportOnConvergence.)
Protected methodOnFailure
Performs any tasks after the main algorithm has failed to converge.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodOnInit
Performs initialization before the first iteration.
(Overrides ManagedIterativeAlgorithmT, TError, TReportOnInit.)
Protected methodReportFailure
Records the results of an algorithm in case it fails.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodReportResult
Records the results of an algorithm.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodReportSuccess
Records the results of a algorithm that converged successfully.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodResetEvaluations
Resets the number of evaluations to zero.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodRestart
Prepares the algorithm to be run again with possibly different inputs.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodRun
Runs the algorithm.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodRun(ParallelOptions)
Runs the algorithm using the specified parallelization options.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodSetMinimumValue
Sets the value of the objective function at the minimum to the supplied value.
Protected methodSetResult
Sets the results of an algorithm's execution.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Public methodSetSymbolicObjectiveFunction(ExpressionFuncVectorDouble, Double)
Sets the objective function as a list of symbolic expressions.
Public methodSetSymbolicObjectiveFunction(IListExpressionFuncVectorDouble, Double)
Sets the objective function as a list of symbolic expressions.
Protected methodTestConvergence
Checks whether the algorithm has converged.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodThreadSafeIncrementEvaluations
Increments the number of evaluations by one.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodThreadSafeIncrementEvaluations(Int32)
Increments the number of evaluations by the specified amount.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Protected methodThrowConvergenceException
Interprets the AlgorithmStatus and throws the appropriate exception.
(Inherited from ManagedIterativeAlgorithmT, TError, TReport.)
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Top
See Also

Reference

LeastSquaresOptimizer Class
Extreme.Mathematics.Optimization Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.