Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics
    • AnovaModel Class
    • AnovaModelRow Class
    • AnovaRow Class
    • AnovaRowType Enumeration
    • AnovaTable Class
    • Cell Structure
    • ContingencyTable Class
    • ContingencyTableCell Structure
    • DateTimeInterval Structure
    • Descriptives(T) Class
    • Filter Class
    • GeneralizedLinearModel Class
    • HypothesisTests Class
    • Kernel Class
    • KernelDensity Class
    • KernelDensityBandwidthEstimator Enumeration
    • LinearRegressionModel Class
    • LinkFunction Class
    • LogisticRegressionMethod Enumeration
    • LogisticRegressionModel Class
    • ModelFamily Class
    • NearestCorrelationMatrixAlgorithm Enumeration
    • NonlinearRegressionModel Class
    • OneWayAnovaModel Class
    • OneWayRAnovaModel Class
    • PolynomialRegressionModel Class
    • RegularizedRegressionModel Class
    • ScaleFittingMethod Enumeration
    • SimpleRegressionKind Enumeration
    • SimpleRegressionModel Class
    • Stats Class
    • StepwiseCriterion Enumeration
    • StepwiseOptions Class
    • StepwiseRegressionMethod Enumeration
    • SumsOfSquaresType Enumeration
    • TestOfHomogeneityOfVariances Enumeration
    • TestOfNormality Enumeration
    • TwoWayAnovaModel Class
    • WindowFilter Class
  • AnovaRow Class
    • Properties
    • Methods

AnovaRow Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents a row in an AnovaTable.
Inheritance Hierarchy

SystemObject
  Extreme.StatisticsAnovaRow
    Extreme.StatisticsAnovaModelRow

Namespace:  Extreme.Statistics
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public class AnovaRow
Public Class AnovaRow
public ref class AnovaRow
type AnovaRow =  class end

The AnovaRow type exposes the following members.

Properties

  NameDescription
Public propertyCaption
Gets or sets the caption for this AnovaRow.
Public propertyDegreesOfFreedom
Gets the number of degrees of freedom of the row.
Public propertyMeanSquare
Gets the mean square.
Public propertyRowType
Gets the AnovaRowType for the row.
Public propertySumOfSquares
Gets the sum of squares.
Top
Methods

  NameDescription
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodToString
Returns a String representation of this instance.
(Overrides ObjectToString.)
Top
Remarks

Use an AnovaRow object to represent a row in an AnovaTable. An ANOVA table summarizes the contributions of various components of a statistical model to the total variation in the data.

AnovaRow objects allow you to access this information through the DegreesOfFreedom, SumOfSquares and MeanSquare properties.

The TotalRow and ErrorRow properties of the AnovaTable class return objects of type AnovaRow. The CompleteModelRow and property and the GetModelRow(Int32) method return objects of type AnovaModelRow, which inherits from AnovaRow, and contains additional properties that give an indication of the significance of the contribution.

AnovaRow objects can't be constructed independently. They are created automatically when the model is computed.

See Also

Reference

Extreme.Statistics Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.