Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics
    • AnovaModel Class
    • AnovaModelRow Class
    • AnovaRow Class
    • AnovaRowType Enumeration
    • AnovaTable Class
    • Cell Structure
    • ContingencyTable Class
    • ContingencyTableCell Structure
    • DateTimeInterval Structure
    • Descriptives(T) Class
    • Filter Class
    • GeneralizedLinearModel Class
    • HypothesisTests Class
    • Kernel Class
    • KernelDensity Class
    • KernelDensityBandwidthEstimator Enumeration
    • LinearRegressionModel Class
    • LinkFunction Class
    • LogisticRegressionMethod Enumeration
    • LogisticRegressionModel Class
    • ModelFamily Class
    • NearestCorrelationMatrixAlgorithm Enumeration
    • NonlinearRegressionModel Class
    • OneWayAnovaModel Class
    • OneWayRAnovaModel Class
    • PolynomialRegressionModel Class
    • RegularizedRegressionModel Class
    • ScaleFittingMethod Enumeration
    • SimpleRegressionKind Enumeration
    • SimpleRegressionModel Class
    • Stats Class
    • StepwiseCriterion Enumeration
    • StepwiseOptions Class
    • StepwiseRegressionMethod Enumeration
    • SumsOfSquaresType Enumeration
    • TestOfHomogeneityOfVariances Enumeration
    • TestOfNormality Enumeration
    • TwoWayAnovaModel Class
    • WindowFilter Class
  • AnovaTable Class
    • Properties
    • Methods

AnovaTable Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents a table containing the results of an ANOVA analysis.
Inheritance Hierarchy

SystemObject
  Extreme.StatisticsAnovaTable

Namespace:  Extreme.Statistics
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public class AnovaTable : IEnumerable<AnovaRow>, 
	IEnumerable
Public Class AnovaTable
	Implements IEnumerable(Of AnovaRow), IEnumerable
public ref class AnovaTable : IEnumerable<AnovaRow^>, 
	IEnumerable
type AnovaTable =  
    class
        interface IEnumerable<AnovaRow>
        interface IEnumerable
    end

The AnovaTable type exposes the following members.

Properties

  NameDescription
Public propertyCompleteModelRow
Gets the AnovaRow containing the results for the complete model.
Public propertyErrorRow
Gets the AnovaRow containing the 'error' results.
Public propertyModelRowCount
Gets the number of rows representing model effects in this AnovaTable.
Public propertyRows
Gets a vector containing the rows in this AnovaTable.
Public propertyTotalRow
Gets the AnovaRow containing the 'total' results.
Top
Methods

  NameDescription
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetEnumerator
Returns an enumerator for the rows in the ANOVA table.
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetModelRow
Returns the model row at the specified index in an AnovaTable.
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodToDataFrame
Converts the data in the AnovaTable to a DataFrameR, C.
Public methodToDataTable
Converts the data in the AnovaTable to a DataTable.
Public methodToString
Returns a String representation of this instance.
(Overrides ObjectToString.)
Top
Extension Methods

  NameDescription
Public Extension MethodGroupAnovaRowOverloaded.
Returns a grouping by the unique elements in a sequence.
(Defined by Grouping.)
Public Extension MethodGroupAnovaRow(IEqualityComparerAnovaRow)Overloaded.
Returns a grouping by the unique elements in a sequence using the specified comparer to determine equality.
(Defined by Grouping.)
Public Extension MethodSumAnovaRowOverloaded.
Computes the sum of the sequence of values.
(Defined by ArrayMath.)
Public Extension MethodSumAnovaRow, U(FuncAnovaRow, U)Overloaded.
Computes the sum of the sequence of values that are obtained by invoking a transform function on each element of the input sequence.
(Defined by ArrayMath.)
Top
Remarks

Use the AnovaTable class to represent an ANOVA table, which contains the results of an Analysis of Variance (ANOVA) calculation or summarizes the results of a regression analysis.

The Rows property provides access to the rows in the table, which are of type AnovaRow. An ANOVA table has at least three rows:

  • The ErrorRow gives information about the error or residual that remains once the model has been accounted for.
  • The TotalRow gives information about the total variation in the data.
  • One or more model rows give information about components of the model. Model rows can be accessed through the GetModelRow(Int32) method.

Model rows are of a specialized type, AnovaModelRow, that provides properties and methods to assess the significance of the component in the model.

The Rows collection has an indexer property that allows for easy access to individual rows. The rows with index from 0 to ModelRowCount-1 correspond to model rows. The row with index ModelRowCount corresponds to the ErrorRow. The row with index ModelRowCount+1 corresponds to the TotalRow.

In addition, the CompleteModelRow property summarizes the contribution of the entire model. This row is not part of the actual ta

AnovaTable objects are read-only. They are created and populated by the model object whose results they represent.

See Also

Reference

Extreme.Statistics Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.