Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics
    • Aggregator Class
    • AnovaModel Class
    • AnovaModelRow Class
    • AnovaRow Class
    • AnovaRowCollection Class
    • AnovaRowType Enumeration
    • AnovaTable Class
    • BoundaryIntervalBehavior Enumeration
    • CategoricalScale Class
    • CategoricalVariable Class
    • CategoricalVariable.CategoricalFilters Structure
    • Cell Structure
    • CellArray Class
    • ClassificationModel Class
    • ClusteringModel Class
    • CollectionSortOrder Class
    • ContingencyTable Class
    • ContingencyTableCell Structure
    • DataArray(T) Class
    • DataArrayElement(T) Class
    • DateTimeInterval Structure
    • DateTimeScale Class
    • DateTimeUnit Enumeration
    • DateTimeVariable Class
    • DateTimeVariable.DateTimeFilters Structure
    • Descriptives(T) Class
    • Filter Class
    • GeneralizedLinearModel Class
    • Histogram Class
    • HistogramBin Structure
    • HistogramBinCollection Class
    • HypothesisTests Class
    • InsufficientDataException Class
    • ITransformationModel Interface
    • Kernel Class
    • KernelDensity Class
    • KernelDensityBandwidthEstimator Enumeration
    • KeyVariable Class
    • KeyVariable(T) Class
    • LinearRegressionModel Class
    • LinkFunction Class
    • LogisticRegressionMethod Enumeration
    • LogisticRegressionModel Class
    • MissingValueAction Enumeration
    • MissingValueException Class
    • Model Class
    • ModelExtensions Class
    • ModelFamily Class
    • ModelFitOptions Class
    • ModelInput Class
    • ModelInputCategory Enumeration
    • ModelInputFormat Enumeration
    • ModelInputGroup Class
    • ModelSerialization Enumeration
    • ModelStatus Enumeration
    • ModelTerm Class
    • ModelTermCollection Class
    • ModelTermKind Enumeration
    • MultipleMissingValueAction Enumeration
    • NearestCorrelationMatrixAlgorithm Enumeration
    • NonlinearRegressionModel Class
    • NumericalScale Class
    • NumericalVariable Class
    • NumericalVariable.NumericalFilters Structure
    • NumericalVariable.NumericalVariableTransforms Structure
    • Observation Structure
    • ObservationCollection Class
    • OneWayAnovaModel Class
    • OneWayRAnovaModel Class
    • Parameter Class
    • ParameterCollection Class
    • ParameterVector Class
    • PolynomialRegressionModel Class
    • RankTiebreaker Enumeration
    • RegressionModel Class
    • RegularizedRegressionModel Class
    • ScaleFittingMethod Enumeration
    • SeriesExtensions Class
    • SimpleRegressionKind Enumeration
    • SimpleRegressionModel Class
    • SortOrder Enumeration
    • SpecialBins Enumeration
    • Stats Class
    • StepwiseCriterion Enumeration
    • StepwiseOptions Class
    • StepwiseRegressionMethod Enumeration
    • SumsOfSquaresType Enumeration
    • TestOfHomogeneityOfVariances Enumeration
    • TestOfNormality Enumeration
    • TransformationModel Class
    • TransformedParameter Class
    • TwoWayAnovaModel Class
    • UnivariateModel Class
    • Variable Class
    • VariableCollection Class
    • WindowFilter Class
  • ContingencyTable Class
    • ContingencyTable Constructors
    • Properties
    • Methods
  • ContingencyTable Constructors
    • ContingencyTable Constructor (Matrix(Double))
    • ContingencyTable Constructor (Matrix)
    • ContingencyTable Constructor (CategoricalVariable, CategoricalVariable)
    • ContingencyTable Constructor (ICategoricalVector, ICategoricalVector)
    • ContingencyTable Constructor (CategoricalVariable, CategoricalVariable, NumericalVariable)
    • ContingencyTable Constructor (ICategoricalVector, ICategoricalVector, Vector(Double))
    • ContingencyTable Constructor (Matrix(Double), IIndex, IIndex)
    • ContingencyTable Constructor (Matrix, CategoricalScale, CategoricalScale)
  • ContingencyTable Constructor (Matrix, CategoricalScale, CategoricalScale)
ContingencyTable Constructor (Matrix, CategoricalScale, CategoricalScale)Extreme Optimization Numerical Libraries for .NET Professional
Constructs a new contingency table object from counts stored in a matrix.

Namespace: Extreme.Statistics
Assembly: Extreme.Numerics.Net40 (in Extreme.Numerics.Net40.dll) Version: 6.0.16073.0 (6.0.16312.0)
Syntax

C#
VB
C++
F#
Copy
public ContingencyTable(
	Matrix counts,
	CategoricalScale rowScale,
	CategoricalScale columnScale
)
Public Sub New ( 
	counts As Matrix,
	rowScale As CategoricalScale,
	columnScale As CategoricalScale
)
public:
ContingencyTable(
	Matrix^ counts, 
	CategoricalScale^ rowScale, 
	CategoricalScale^ columnScale
)
new : 
        counts : Matrix * 
        rowScale : CategoricalScale * 
        columnScale : CategoricalScale -> ContingencyTable

Parameters

counts
Type: Extreme.MathematicsMatrix
A Matrix that contains the cell counts.
rowScale
Type: Extreme.StatisticsCategoricalScale
The categorical scale that contains the categories corresponding to the rows in the contingency table.
columnScale
Type: Extreme.StatisticsCategoricalScale
The categorical scale that contains the categories corresponding to the rows in the contingency table.
Exceptions

ExceptionCondition
ArgumentNullException

counts is .

ArgumentException

One or more elements of counts is not a finite positive number.

Version Information

Numerical Libraries

Supported in: 5.x, 4.x
See Also

Reference

ContingencyTable Class
ContingencyTable Overload
Extreme.Statistics Namespace

Copyright (c) 2004-2016 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.