Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Distributions
    • BernoulliDistribution Class
    • BetaDistribution Class
    • BinomialDistribution Class
    • CauchyDistribution Class
    • ChiSquareDistribution Class
    • ContinuousDistribution Class
    • ContinuousUniformDistribution Class
    • DirichletDistribution Class
    • DiscreteDistribution Class
    • DiscreteUniformDistribution Class
    • Distribution Class
    • ErlangDistribution Class
    • EstimationMethod Enumeration
    • ExponentialDistribution Class
    • FDistribution Class
    • GammaDistribution Class
    • GaussianMixtureDistribution Class
    • GeneralizedParetoDistribution Class
    • GenericDiscreteDistribution Class
    • GeometricDistribution Class
    • GumbelDistribution Class
    • HyperbolicDistribution Class
    • HypergeometricDistribution Class
    • InverseChiSquareDistribution Class
    • InverseGammaDistribution Class
    • InverseGaussianDistribution Class
    • InverseWeibullDistribution Class
    • LaplaceDistribution Class
    • LogarithmicSeriesDistribution Class
    • LogisticDistribution Class
    • LogLogisticDistribution Class
    • LognormalDistribution Class
    • MaxwellDistribution Class
    • MultivariateContinuousDistribution Class
    • MultivariateNormalDistribution Class
    • NegativeBinomialDistribution Class
    • NonCentralBetaDistribution Class
    • NonCentralChiSquareDistribution Class
    • NonCentralFDistribution Class
    • NonCentralStudentTDistribution Class
    • NormalDistribution Class
    • NormalInverseGaussianDistribution Class
    • ParetoDistribution Class
    • ParetoDistributionVariant Enumeration
    • PiecewiseDistribution Class
    • PoissonDistribution Class
    • RandomExtensions Class
    • RayleighDistribution Class
    • StudentTDistribution Class
    • TransformedBetaDistribution Class
    • TransformedGammaDistribution Class
    • TriangularDistribution Class
    • TruncatedDistribution Class
    • WeibullDistribution Class
    • WishartDistribution Class
  • DirichletDistribution Class
    • DirichletDistribution Constructors
    • DirichletDistribution Properties
    • Methods
  • Methods
    • GetMeans Method
    • GetParameters Method
    • GetVarianceCovarianceMatrix Method
    • LogProbabilityDensityFunction Method Overloads
DirichletDistribution MethodsExtreme Optimization Numerical Libraries for .NET Professional

The DirichletDistribution type exposes the following members.

Methods

  NameDescription
Public methodEquals
Determines whether the specified Object is equal to the current Object.
(Inherited from Object.)
Public methodFillSample(Random, VectorDouble)
Fills a vector with a random sample from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodFillSample(Random, Double)
Fills a Double array with random numbers.
(Inherited from MultivariateContinuousDistribution.)
Public methodFillSample(Random, Vector)
Fills a vector with a random sample from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodFillSamples(Random, MatrixDouble)
Fills the rows of a matrix with random samples from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodFillSamples(Random, Matrix)
Fills the rows of a matrix with random samples from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodGetHashCode
Serves as a hash function for a particular type.
(Inherited from Object.)
Public methodGetMeans
Returns the mean or expectation value of the distribution.
(Overrides MultivariateContinuousDistributionGetMeans.)
Public methodGetParameters
Returns a copy of the parameters of the distribution.
Public methodGetRandomVariate Obsolete.
Returns a random sample from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodGetRandomVariates
Returns a matrix with random samples from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodGetVarianceCovarianceMatrix
Returns the variance of the distribution.
(Overrides MultivariateContinuousDistributionGetVarianceCovarianceMatrix.)
Public methodLogProbabilityDensityFunction(VectorDouble)
Returns the value of the probability density function (PDF) of this distribution for the specified value.
(Overrides MultivariateContinuousDistributionLogProbabilityDensityFunction(VectorDouble).)
Public methodLogProbabilityDensityFunction(Vector)
Returns the value of the probability density function (PDF) of this distribution for the specified value.
(Overrides MultivariateContinuousDistributionLogProbabilityDensityFunction(Vector).)
Public methodProbabilityDensityFunction(VectorDouble)
Returns the value of the probability density function (PDF) of this distribution for the specified value.
(Inherited from MultivariateContinuousDistribution.)
Public methodProbabilityDensityFunction(Vector)
Returns the value of the probability density function (PDF) of this distribution for the specified value.
(Inherited from MultivariateContinuousDistribution.)
Public methodSample(Random)
Returns a random sample from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodSample(Random, Int32)
Returns a matrix with random samples from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Top
See Also

Reference

DirichletDistribution Class
Extreme.Statistics.Distributions Namespace

Copyright (c) 2004-2016 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.