Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Distributions
    • ArcsineDistribution Class
    • BernoulliDistribution Class
    • BetaDistribution Class
    • BinomialDistribution Class
    • CauchyDistribution Class
    • ChiSquareDistribution Class
    • ContinuousDistribution Class
    • ContinuousUniformDistribution Class
    • DirichletDistribution Class
    • DiscreteDistribution Class
    • DiscreteDistribution(T) Class
    • DiscreteUniformDistribution Class
    • Distribution Class
    • ErlangDistribution Class
    • EstimationMethod Enumeration
    • ExponentialDistribution Class
    • FDistribution Class
    • GammaDistribution Class
    • GaussianMixtureDistribution Class
    • GeneralizedParetoDistribution Class
    • GenericDiscreteDistribution Class
    • GeometricDistribution Class
    • GumbelDistribution Class
    • HyperbolicDistribution Class
    • HypergeometricDistribution Class
    • InverseChiSquareDistribution Class
    • InverseGammaDistribution Class
    • InverseGaussianDistribution Class
    • InverseWeibullDistribution Class
    • JohnsonDistribution Class
    • JohnsonDistributionType Enumeration
    • LaplaceDistribution Class
    • LogarithmicSeriesDistribution Class
    • LogisticDistribution Class
    • LogLogisticDistribution Class
    • LognormalDistribution Class
    • MaxwellDistribution Class
    • MultivariateContinuousDistribution Class
    • MultivariateNormalDistribution Class
    • NegativeBinomialDistribution Class
    • NonCentralBetaDistribution Class
    • NonCentralChiSquareDistribution Class
    • NonCentralFDistribution Class
    • NonCentralStudentTDistribution Class
    • NormalDistribution Class
    • NormalInverseGaussianDistribution Class
    • ParetoDistribution Class
    • ParetoDistributionVariant Enumeration
    • PertDistribution Class
    • PiecewiseDistribution Class
    • PoissonDistribution Class
    • RandomExtensions Class
    • RayleighDistribution Class
    • StudentTDistribution Class
    • TransformedBetaDistribution Class
    • TransformedGammaDistribution Class
    • TriangularDistribution Class
    • TruncatedDistribution Class
    • WeibullDistribution Class
    • WishartDistribution Class
  • DiscreteDistribution Class
    • DiscreteDistribution Constructor
    • Properties
    • Methods
  • Methods
    • DistributionFunction Method
    • GetAllModes Method
    • GetExpectedHistogram Method Overloads
    • GetRandomSequence Method Overloads
    • InverseDistributionFunction Method
    • LeftTailProbability Method
    • LogProbability Method
    • Probability Method Overloads
    • RightTailProbability Method
    • Sample Method Overloads
    • TwoTailProbability Method

DiscreteDistribution Methods

Extreme Optimization Numerical Libraries for .NET Professional

The DiscreteDistribution type exposes the following members.

Methods

  NameDescription
Public methodDistributionFunction
Gets the probability of obtaining an outcome less than or equal to a specified value.
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetAllModes
Returns an array that contains all the modes of the distribution.
Public methodGetExpectedHistogram(IndexIntervalInt32, Double)
Returns a histogram whose bins contain the expected number of samples from the distribution for a given total number of samples.
Public methodGetExpectedHistogram(IndexInt32, Double)
Returns a histogram whose bins contain the expected number of samples from the distribution for a given total number of samples.
Public methodGetExpectedHistogram(Int32, Int32, Double)
Returns a histogram whose bins contain the expected number of samples from the distribution for a given total number of samples.
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetRandomSequence
Returns a sequence of random samples from the distribution.
Public methodGetRandomSequence(Random)
Returns a sequence of random samples from the distribution.
Public methodGetRandomSequence(Random, Int32)
Returns a sequence of random samples of the specified length from the distribution.
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodInverseDistributionFunction
Returns the inverse of the distribution function.
Public methodLeftTailProbability
Gets the probability of obtaining a sample that is less than or less than or equal to the specified upper bound.
Public methodLogProbability
Returns the logarithm of the probability of obtaining a specific integer value in the distribution.
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodProbability(Int32)
Returns the probability of obtaining a specific integer value in the distribution.
Public methodProbability(Int32, Int32)
Gets the probability of obtaining a sample that falls within the specified interval from the distribution.
Public methodRightTailProbability
Gets the probability of obtaining a sample that is less than or less than or equal to the specified upper bound.
Public methodSample
Returns a random sample from the distribution.
Public methodSample(Int32)
Returns a vector of random samples from the distribution.
Public methodSample(Random)
Returns a random sample from the distribution.
Public methodSample(Int32, Random)
Returns a vector of random samples from the distribution.
Public methodSample(Random, Int32)
Fills an Int32 array with random numbers.
Public methodSample(Random, Int32, Int32, Int32)
Fills an Int32 array with random numbers from this DiscreteDistribution.
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Public methodTwoTailProbability
Gets the probability of obtaining a sample that is less than or less than or equal to the specified upper bound.
Top
See Also

Reference

DiscreteDistribution Class
Extreme.Statistics.Distributions Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.