Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Distributions
    • BernoulliDistribution Class
    • BetaDistribution Class
    • BinomialDistribution Class
    • CauchyDistribution Class
    • ChiSquareDistribution Class
    • ContinuousDistribution Class
    • ContinuousUniformDistribution Class
    • DirichletDistribution Class
    • DiscreteDistribution Class
    • DiscreteUniformDistribution Class
    • Distribution Class
    • ErlangDistribution Class
    • EstimationMethod Enumeration
    • ExponentialDistribution Class
    • FDistribution Class
    • GammaDistribution Class
    • GaussianMixtureDistribution Class
    • GeneralizedParetoDistribution Class
    • GenericDiscreteDistribution Class
    • GeometricDistribution Class
    • GumbelDistribution Class
    • HyperbolicDistribution Class
    • HypergeometricDistribution Class
    • InverseChiSquareDistribution Class
    • InverseGammaDistribution Class
    • InverseGaussianDistribution Class
    • InverseWeibullDistribution Class
    • LaplaceDistribution Class
    • LogarithmicSeriesDistribution Class
    • LogisticDistribution Class
    • LogLogisticDistribution Class
    • LognormalDistribution Class
    • MaxwellDistribution Class
    • MultivariateContinuousDistribution Class
    • MultivariateNormalDistribution Class
    • NegativeBinomialDistribution Class
    • NonCentralBetaDistribution Class
    • NonCentralChiSquareDistribution Class
    • NonCentralFDistribution Class
    • NonCentralStudentTDistribution Class
    • NormalDistribution Class
    • NormalInverseGaussianDistribution Class
    • ParetoDistribution Class
    • ParetoDistributionVariant Enumeration
    • PiecewiseDistribution Class
    • PoissonDistribution Class
    • RandomExtensions Class
    • RayleighDistribution Class
    • StudentTDistribution Class
    • TransformedBetaDistribution Class
    • TransformedGammaDistribution Class
    • TriangularDistribution Class
    • TruncatedDistribution Class
    • WeibullDistribution Class
    • WishartDistribution Class
  • TransformedGammaDistribution Class
    • TransformedGammaDistribution Constructor
    • Properties
    • Methods
  • Methods
    • DistributionFunction Method
    • GetRandomVariate Method Overloads
    • InverseDistributionFunction Method
    • MomentFunction Method
    • ProbabilityDensityFunction Method
    • Sample Method Overloads
    • SurvivorDistributionFunction Method
  • Sample Method Overloads
    • Sample Method (Random)
    • Sample Method (Random, Double, Double, Double)
  • Sample Method (Random, Double, Double, Double)
TransformedGammaDistributionSample Method (Random, Double, Double, Double)Extreme Optimization Numerical Libraries for .NET Professional
Returns a single random sample from a transformed gamma distribution with the specified parameters.

Namespace: Extreme.Statistics.Distributions
Assembly: Extreme.Numerics.Net40 (in Extreme.Numerics.Net40.dll) Version: 6.0.16073.0 (6.0.16312.0)
Syntax

C#
VB
C++
F#
Copy
public static double Sample(
	Random random,
	double shape1,
	double shape2,
	double scale
)
Public Shared Function Sample ( 
	random As Random,
	shape1 As Double,
	shape2 As Double,
	scale As Double
) As Double
public:
static double Sample(
	Random^ random, 
	double shape1, 
	double shape2, 
	double scale
)
static member Sample : 
        random : Random * 
        shape1 : float * 
        shape2 : float * 
        scale : float -> float 

Parameters

random
Type: SystemRandom
The Random derived random number generator used to generate the sample.
shape1
Type: SystemDouble
The first shape parameter of the distribution. Must be strictly greater than zero.
shape2
Type: SystemDouble
The second shape parameter of the distribution. Must be strictly greater than zero.
scale
Type: SystemDouble
The scale parameter. Must be strictly greater than zero.

Return Value

Type: Double
A double-precision floating-point number that is a sample from the transformed gamma distribution with the specified parameters.
Exceptions

ExceptionCondition
ArgumentNullExceptionrandom is .
ArgumentOutOfRangeExceptionshape1 is less than or equal to zero.

-or-

shape2 is less than or equal to zero.

-or-

scale is less than or equal to zero.

Remarks

scale must be strictly greater than zero.

This method is useful when only a single random sample is required, or if the parameters of the distribution change often. To obtain a large number of samples from a distribution with identical parameters, create an instance of the class and call the Sample(Random, Double, Double, Double) method repeatedly.

Version Information

Numerical Libraries

Supported in: 6.0, 5.x, 4.x
See Also

Reference

TransformedGammaDistribution Class
Sample Overload
Extreme.Statistics.Distributions Namespace

Copyright (c) 2004-2016 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.