Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics
    • Aggregator Class
    • AnovaModel Class
    • AnovaModelRow Class
    • AnovaRow Class
    • AnovaRowCollection Class
    • AnovaRowType Enumeration
    • AnovaTable Class
    • BoundaryIntervalBehavior Enumeration
    • CategoricalScale Class
    • CategoricalVariable Class
    • CategoricalVariable.CategoricalFilters Structure
    • Cell Structure
    • CellArray Class
    • ClassificationModel Class
    • ClusteringModel Class
    • CollectionSortOrder Class
    • ContingencyTable Class
    • ContingencyTableCell Structure
    • DataArray(T) Class
    • DataArrayElement(T) Class
    • DateTimeInterval Structure
    • DateTimeScale Class
    • DateTimeUnit Enumeration
    • DateTimeVariable Class
    • DateTimeVariable.DateTimeFilters Structure
    • Descriptives(T) Class
    • Filter Class
    • GeneralizedLinearModel Class
    • Histogram Class
    • HistogramBin Structure
    • HistogramBinCollection Class
    • HypothesisTests Class
    • InsufficientDataException Class
    • ITransformationModel Interface
    • Kernel Class
    • KernelDensity Class
    • KernelDensityBandwidthEstimator Enumeration
    • KeyVariable Class
    • KeyVariable(T) Class
    • LinearRegressionModel Class
    • LinkFunction Class
    • LogisticRegressionMethod Enumeration
    • LogisticRegressionModel Class
    • MissingValueAction Enumeration
    • MissingValueException Class
    • Model Class
    • ModelExtensions Class
    • ModelFamily Class
    • ModelFitOptions Class
    • ModelInput Class
    • ModelInputCategory Enumeration
    • ModelInputFormat Enumeration
    • ModelInputGroup Class
    • ModelSerialization Enumeration
    • ModelStatus Enumeration
    • ModelTerm Class
    • ModelTermCollection Class
    • ModelTermKind Enumeration
    • MultipleMissingValueAction Enumeration
    • NearestCorrelationMatrixAlgorithm Enumeration
    • NonlinearRegressionModel Class
    • NumericalScale Class
    • NumericalVariable Class
    • NumericalVariable.NumericalFilters Structure
    • NumericalVariable.NumericalVariableTransforms Structure
    • Observation Structure
    • ObservationCollection Class
    • OneWayAnovaModel Class
    • OneWayRAnovaModel Class
    • Parameter Class
    • ParameterCollection Class
    • ParameterVector Class
    • PolynomialRegressionModel Class
    • RankTiebreaker Enumeration
    • RegressionModel Class
    • RegularizedRegressionModel Class
    • ScaleFittingMethod Enumeration
    • SeriesExtensions Class
    • SimpleRegressionKind Enumeration
    • SimpleRegressionModel Class
    • SortOrder Enumeration
    • SpecialBins Enumeration
    • Stats Class
    • StepwiseCriterion Enumeration
    • StepwiseOptions Class
    • StepwiseRegressionMethod Enumeration
    • SumsOfSquaresType Enumeration
    • TestOfHomogeneityOfVariances Enumeration
    • TestOfNormality Enumeration
    • TransformationModel Class
    • TransformedParameter Class
    • TwoWayAnovaModel Class
    • UnivariateModel Class
    • Variable Class
    • VariableCollection Class
    • WindowFilter Class
  • HypothesisTests Class
    • Methods
  • Methods
    • AndersonDarlingTest Method
    • CramerVonMisesTest Method Overloads
    • FTest Method Overloads
    • GoodnessOfFitTest Method Overloads
    • KolmogorovSmirnovTest Method Overloads
    • McNemarTest Method Overloads
    • PairedTTest Method
    • ShapiroWilkTest Method
    • StuartMaxwellTest Method
    • TTest Method Overloads
    • TwoSampleZTest Method
    • UnpairedTTest Method
    • ZTest Method Overloads
  • AndersonDarlingTest Method
HypothesisTestsAndersonDarlingTest Method Extreme Optimization Numerical Libraries for .NET Professional
Returns an Anderson-Darling test whether a sample was drawn from the normal distribution.

Namespace: Extreme.Statistics
Assembly: Extreme.Numerics.Net40 (in Extreme.Numerics.Net40.dll) Version: 6.0.16073.0 (6.0.17114.0)
Syntax

C#
VB
C++
F#
Copy
public static AndersonDarlingTest AndersonDarlingTest(
	Vector<double> sample,
	double mean = NaN,
	double standardDeviation = NaN
)
Public Shared Function AndersonDarlingTest ( 
	sample As Vector(Of Double),
	Optional mean As Double = NaN,
	Optional standardDeviation As Double = NaN
) As AndersonDarlingTest
public:
static AndersonDarlingTest^ AndersonDarlingTest(
	Vector<double>^ sample, 
	double mean = NaN, 
	double standardDeviation = NaN
)
static member AndersonDarlingTest : 
        sample : Vector<float> * 
        ?mean : float * 
        ?standardDeviation : float 
(* Defaults:
        let _mean = defaultArg mean NaN
        let _standardDeviation = defaultArg standardDeviation NaN
*)
-> AndersonDarlingTest 

Parameters

sample
Type: Extreme.MathematicsVectorDouble
A vector that contains a sample from the population.
mean (Optional)
Type: SystemDouble
The mean of the population, if known; otherwise NaN.
standardDeviation (Optional)
Type: SystemDouble
The standard deviation of the population, if known; otherwise NaN.

Return Value

Type: AndersonDarlingTest
An Anderson-Darling test.
Version Information

Numerical Libraries

Supported in: 6.0
See Also

Reference

HypothesisTests Class
Extreme.Statistics Namespace

Copyright (c) 2004-2017 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.