Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.Distributed.Cuda
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.FSharp
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.Generic.LinearAlgebra
    • Extreme.Mathematics.Generic.LinearAlgebra.Implementation
    • Extreme.Mathematics.Generic.LinearAlgebra.Providers
    • Extreme.Mathematics.Generic.SignalProcessing
    • Extreme.Mathematics.Implementation
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Complex
    • Extreme.Mathematics.LinearAlgebra.Complex.Decompositions
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IO
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.LinearAlgebra.Providers
    • Extreme.Mathematics.LinearAlgebra.Sparse
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.Genetic
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Numerics.FSharp
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.IO
    • Extreme.Statistics.Linq
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Random
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics
    • Aggregator Class
    • AnovaModel Class
    • AnovaModelRow Class
    • AnovaRow Class
    • AnovaRowCollection Class
    • AnovaRowType Enumeration
    • AnovaTable Class
    • BoundaryIntervalBehavior Enumeration
    • CategoricalScale Class
    • CategoricalVariable Class
    • CategoricalVariable.CategoricalFilters Structure
    • Cell Structure
    • CellArray Class
    • ClassificationModel Class
    • ClusteringModel Class
    • CollectionSortOrder Class
    • ContingencyTable Class
    • ContingencyTableCell Structure
    • DataArray(T) Class
    • DataArrayElement(T) Class
    • DateTimeInterval Structure
    • DateTimeScale Class
    • DateTimeUnit Enumeration
    • DateTimeVariable Class
    • DateTimeVariable.DateTimeFilters Structure
    • Descriptives(T) Class
    • Filter Class
    • GeneralizedLinearModel Class
    • Histogram Class
    • HistogramBin Structure
    • HistogramBinCollection Class
    • HypothesisTests Class
    • InsufficientDataException Class
    • ITransformationModel Interface
    • Kernel Class
    • KernelDensity Class
    • KernelDensityBandwidthEstimator Enumeration
    • KeyVariable Class
    • KeyVariable(T) Class
    • LinearRegressionModel Class
    • LinkFunction Class
    • LogisticRegressionMethod Enumeration
    • LogisticRegressionModel Class
    • MissingValueAction Enumeration
    • MissingValueException Class
    • Model Class
    • ModelExtensions Class
    • ModelFamily Class
    • ModelFitOptions Class
    • ModelInput Class
    • ModelInputCategory Enumeration
    • ModelInputFormat Enumeration
    • ModelInputGroup Class
    • ModelSerialization Enumeration
    • ModelStatus Enumeration
    • ModelTerm Class
    • ModelTermCollection Class
    • ModelTermKind Enumeration
    • MultipleMissingValueAction Enumeration
    • NearestCorrelationMatrixAlgorithm Enumeration
    • NonlinearRegressionModel Class
    • NumericalScale Class
    • NumericalVariable Class
    • NumericalVariable.NumericalFilters Structure
    • NumericalVariable.NumericalVariableTransforms Structure
    • Observation Structure
    • ObservationCollection Class
    • OneWayAnovaModel Class
    • OneWayRAnovaModel Class
    • Parameter Class
    • ParameterCollection Class
    • ParameterVector Class
    • PolynomialRegressionModel Class
    • RankTiebreaker Enumeration
    • RegressionModel Class
    • RegularizedRegressionModel Class
    • ScaleFittingMethod Enumeration
    • SeriesExtensions Class
    • SimpleRegressionKind Enumeration
    • SimpleRegressionModel Class
    • SortOrder Enumeration
    • SpecialBins Enumeration
    • Stats Class
    • StepwiseCriterion Enumeration
    • StepwiseOptions Class
    • StepwiseRegressionMethod Enumeration
    • SumsOfSquaresType Enumeration
    • TestOfHomogeneityOfVariances Enumeration
    • TestOfNormality Enumeration
    • TransformationModel Class
    • TransformedParameter Class
    • TwoWayAnovaModel Class
    • UnivariateModel Class
    • Variable Class
    • VariableCollection Class
    • WindowFilter Class
  • HypothesisTests Class
    • Methods
  • Methods
    • AndersonDarlingTest Method
    • CramerVonMisesTest Method Overloads
    • FTest Method Overloads
    • GoodnessOfFitTest Method Overloads
    • KolmogorovSmirnovTest Method Overloads
    • McNemarTest Method Overloads
    • PairedTTest Method
    • ShapiroWilkTest Method
    • StuartMaxwellTest Method
    • TTest Method Overloads
    • TwoSampleZTest Method
    • UnpairedTTest Method
    • ZTest Method Overloads
  • GoodnessOfFitTest Method Overloads
    • GoodnessOfFitTest(T) Method (Histogram(T), Histogram(T))
    • GoodnessOfFitTest Method (Histogram(Double), ContinuousDistribution, Int32)
    • GoodnessOfFitTest Method (Histogram(Int32), DiscreteDistribution, Int32)
  • GoodnessOfFitTest Method (Histogram(Double), ContinuousDistribution, Int32)
HypothesisTestsGoodnessOfFitTest Method (HistogramDouble, ContinuousDistribution, Int32)Extreme Optimization Numerical Libraries for .NET Professional
Returns a ChiSquareGoodnessOfFitTest object to test if the distribution follows the specified distribution.

Namespace: Extreme.Statistics
Assembly: Extreme.Numerics.Net40 (in Extreme.Numerics.Net40.dll) Version: 6.0.16073.0 (6.0.17114.0)
Syntax

C#
VB
C++
F#
Copy
public static ChiSquareGoodnessOfFitTest GoodnessOfFitTest(
	this Histogram<double> histogram,
	ContinuousDistribution distribution,
	int numberOfEstimatedParameters
)
<ExtensionAttribute>
Public Shared Function GoodnessOfFitTest ( 
	histogram As Histogram(Of Double),
	distribution As ContinuousDistribution,
	numberOfEstimatedParameters As Integer
) As ChiSquareGoodnessOfFitTest
public:
[ExtensionAttribute]
static ChiSquareGoodnessOfFitTest^ GoodnessOfFitTest(
	Histogram<double>^ histogram, 
	ContinuousDistribution^ distribution, 
	int numberOfEstimatedParameters
)
[<ExtensionAttribute>]
static member GoodnessOfFitTest : 
        histogram : Histogram<float> * 
        distribution : ContinuousDistribution * 
        numberOfEstimatedParameters : int -> ChiSquareGoodnessOfFitTest 

Parameters

histogram
Type: Extreme.DataAnalysisHistogramDouble
The histogram for which to return the goodness-of-fit test.
distribution
Type: Extreme.Statistics.DistributionsContinuousDistribution
A Distribution object that represents the distribution that is to be compared.
numberOfEstimatedParameters
Type: SystemInt32
The number of parameters of distribution that were estimated from the sample.

Return Value

Type: ChiSquareGoodnessOfFitTest
A ChiSquareGoodnessOfFitTest object.

Usage Note

In Visual Basic and C#, you can call this method as an instance method on any object of type HistogramDouble. When you use instance method syntax to call this method, omit the first parameter. For more information, see Extension Methods (Visual Basic) or Extension Methods (C# Programming Guide).
Remarks

Use this method to construct a test for how well the histogram fits a given distribution. The method returns a ChiSquareGoodnessOfFitTest object.

The distribution can be discrete or continuous. A histogram with the same boundaries as the original is automatically created to perform the test.

The numberOfEstimatedParameters specifies how many distribution parameters were estimated from the data. The degrees of freedom of the data is decreased accordingly.

Version Information

Numerical Libraries

Supported in: 6.0
See Also

Reference

HypothesisTests Class
GoodnessOfFitTest Overload
Extreme.Statistics Namespace
Extreme.Statistics.TestsChiSquareGoodnessOfFitTest

Copyright (c) 2004-2017 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2018, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.