Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics
    • AnovaModel Class
    • AnovaModelRow Class
    • AnovaRow Class
    • AnovaRowType Enumeration
    • AnovaTable Class
    • Cell Structure
    • ContingencyTable Class
    • ContingencyTableCell Structure
    • DateTimeInterval Structure
    • Descriptives(T) Class
    • Filter Class
    • GeneralizedLinearModel Class
    • HypothesisTests Class
    • Kernel Class
    • KernelDensity Class
    • KernelDensityBandwidthEstimator Enumeration
    • LinearRegressionModel Class
    • LinkFunction Class
    • LogisticRegressionMethod Enumeration
    • LogisticRegressionModel Class
    • ModelFamily Class
    • NearestCorrelationMatrixAlgorithm Enumeration
    • NonlinearRegressionModel Class
    • OneWayAnovaModel Class
    • OneWayRAnovaModel Class
    • PolynomialRegressionModel Class
    • RegularizedRegressionModel Class
    • ScaleFittingMethod Enumeration
    • SimpleRegressionKind Enumeration
    • SimpleRegressionModel Class
    • Stats Class
    • StepwiseCriterion Enumeration
    • StepwiseOptions Class
    • StepwiseRegressionMethod Enumeration
    • SumsOfSquaresType Enumeration
    • TestOfHomogeneityOfVariances Enumeration
    • TestOfNormality Enumeration
    • TwoWayAnovaModel Class
    • WindowFilter Class
  • LinkFunction Class
    • LinkFunction Constructor
    • Methods
    • Fields

LinkFunction Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents a link function in a GeneralizedLinearModel.
Inheritance Hierarchy

SystemObject
  Extreme.StatisticsLinkFunction

Namespace:  Extreme.Statistics
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public abstract class LinkFunction
Public MustInherit Class LinkFunction
public ref class LinkFunction abstract
[<AbstractClassAttribute>]
type LinkFunction =  class end

The LinkFunction type exposes the following members.

Constructors

  NameDescription
Protected methodLinkFunction
Initializes a new instance of the LinkFunction class
Top
Methods

  NameDescription
Public methodDerivativeAt
Evaluates the derivative of the link function.
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodStatic memberFromName
Returns the link function by its name.
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodInverse
Evaluates the inverse of the link function.
Public methodMapInto
Evaluates the link function for a set of values.
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodStatic memberNegativeBinomial
Returns the negative binomial link function for the specified parameter value.
Public methodStatic memberOddsPower
Returns a link function that uses an odds power ratio.
Public methodStatic memberPower
Returns the power link function for the specified exponent.
Public methodSecondDerivativeAt
Evaluates the second derivative of the link function.
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Public methodValueAt
Evaluates the link function.
Top
Fields

  NameDescription
Public fieldStatic memberComplementaryLogLog
Returns the complementary log-log link function.
Public fieldStatic memberIdentity
Returns the identity link function.
Public fieldStatic memberLog
Returns the log-link function.
Public fieldStatic memberLogComplement
Returns the complement of the log link function.
Public fieldStatic memberLogit
Returns the logit-link function.
Public fieldStatic memberNegativeLogLog
Returns the negative log log link function.
Public fieldStatic memberProbit
Returns the probit-link function.
Public fieldStatic memberReciprocal
Returns the reciprocal link function.
Public fieldStatic memberReciprocalSquared
Returns the reciprocal squared link function.
Top
Remarks

Use an instance of the LinkFunction class to define the relationship between the dependent variable and the linear combination of predictor variables in a GeneralizedLinearModel. Each ModelFamily has a canonical link function that is used if no link function is specified.

The instance members of this class are used by the GeneralizedLinearModel class and are of little interest to end users. Instead, set the LinkFunction property of the GeneralizedLinearModel class to the appropriate field or method result. The following predefined link functions are available:

MemberDescription
IdentityThe identity function. This is the canonical link function for the normal family.
LogThe natural logarithn. This is the canonical link function for the Poisson family.
LogitThe logit function. This is the canonical link function for the binomial family (logistic regression).
ProbitThe cumulative normal distribution function. This is used with the binomial family in probit regression.
ComplementaryLogLogThe complementary log-log function.
ReciprocalThe reciprocal (1 / x) function. This is the canonical link function for the gamma family.
ReciprocalSquaredThe square of the reciprocal function.
IdentityThe identity function. This is the canonical link function for the normal family.
IdentityThe identity function. This is the canonical link function for the normal family.
IdentityThe identity function. This is the canonical link function for the normal family.
IdentityThe identity function. This is the canonical link function for the normal family.
IdentityThe identity function. This is the canonical link function for the normal family.
See Also

Reference

Extreme.Statistics Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.