Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Multivariate
    • DendrogramNode Class
    • DistanceMeasures Class
    • Factor Class
    • FactorAnalysis Class
    • FactorCountMethod Enumeration
    • FactorExtractionMethod Enumeration
    • FactorMethod Enumeration
    • FactorRotationMethod Enumeration
    • FactorScoreMethod Enumeration
    • HierarchicalCluster Class
    • HierarchicalClusterAnalysis Class
    • HierarchicalClusterCollection Class
    • KMeansCluster Class
    • KMeansClusterAnalysis Class
    • KMeansInitializationMethod Enumeration
    • LinearDiscriminantAnalysis Class
    • LinearDiscriminantFunction Class
    • LinkageMethod Enumeration
    • PartialLeastSquaresMethod Enumeration
    • PartialLeastSquaresModel Class
    • PrincipalComponent Class
    • PrincipalComponentAnalysis Class
    • PrincipalComponentCollection Class
    • ScalingMethod Enumeration
    • SimilarityMatrix Class
  • KMeansInitializationMethod Enumeration

KMeansInitializationMethod Enumeration

Extreme Optimization Numerical Libraries for .NET Professional
Enumerates the methods that may be used to initialize the K-means clustering algorithm.

Namespace:  Extreme.Statistics.Multivariate
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public enum KMeansInitializationMethod
Public Enumeration KMeansInitializationMethod
public enum class KMeansInitializationMethod
type KMeansInitializationMethod
Members

  Member nameValueDescription
KMeansPlusPlus0 Use the K-means++ algorithm to compute initial centroids. This is the default.
RandomCenters1 Use randomly selected observations as the centroid.
Forgy1 Same as RandomCenters. Use randomly selected observations as the centroid.
RandomAssignments2 Assign each observation randomly to one of the clusters and uses the centroid of each cluster.
See Also

Reference

Extreme.Statistics.Multivariate Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.