Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics
    • AnovaModel Class
    • AnovaModelRow Class
    • AnovaRow Class
    • AnovaRowType Enumeration
    • AnovaTable Class
    • Cell Structure
    • ContingencyTable Class
    • ContingencyTableCell Structure
    • DateTimeInterval Structure
    • Descriptives(T) Class
    • Filter Class
    • GeneralizedLinearModel Class
    • HypothesisTests Class
    • Kernel Class
    • KernelDensity Class
    • KernelDensityBandwidthEstimator Enumeration
    • LinearRegressionModel Class
    • LinkFunction Class
    • LogisticRegressionMethod Enumeration
    • LogisticRegressionModel Class
    • ModelFamily Class
    • NearestCorrelationMatrixAlgorithm Enumeration
    • NonlinearRegressionModel Class
    • OneWayAnovaModel Class
    • OneWayRAnovaModel Class
    • PolynomialRegressionModel Class
    • RegularizedRegressionModel Class
    • ScaleFittingMethod Enumeration
    • SimpleRegressionKind Enumeration
    • SimpleRegressionModel Class
    • Stats Class
    • StepwiseCriterion Enumeration
    • StepwiseOptions Class
    • StepwiseRegressionMethod Enumeration
    • SumsOfSquaresType Enumeration
    • TestOfHomogeneityOfVariances Enumeration
    • TestOfNormality Enumeration
    • TwoWayAnovaModel Class
    • WindowFilter Class
  • Stats Class
    • Methods

Stats Class

Extreme Optimization Numerical Libraries for .NET Professional
Provides static methods for descriptive statistics and other statistical functions.
Inheritance Hierarchy

SystemObject
  Extreme.StatisticsStats

Namespace:  Extreme.Statistics
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public static class Stats
<ExtensionAttribute>
Public NotInheritable Class Stats
[ExtensionAttribute]
public ref class Stats abstract sealed
[<AbstractClassAttribute>]
[<SealedAttribute>]
[<ExtensionAttribute>]
type Stats =  class end

The Stats type exposes the following members.

Methods

  NameDescription
Public methodStatic memberAutocorrelation(Double)
Gets the lag-1 auto-correlation of the elements of an array.
Public methodStatic memberAutocorrelation(VectorDouble)
Gets the lag-1 auto-correlation of the elements of a vector.
Public methodStatic memberAutocorrelation(Double, Int32)
Gets the auto-correlation of the elements of an array.
Public methodStatic memberAutocorrelation(VectorDouble, Int32)
Gets the auto-correlation of the elements of a vector.
Public methodStatic memberAverageAbsoluteDeviation
Returns the mean absolute deviation from the mean of a variable.
Public methodStatic memberBlomScores(IListDouble)
Returns the Blom scores corresponding to the specified ranks.
Public methodStatic memberBlomScores(IListInt32)
Returns the Blom scores corresponding to the specified ranks.
Public methodStatic memberCentralMomentT(T, Int32)
Returns the specified central moment of the elements of an array.
Public methodStatic memberCentralMomentT(VectorT, Int32)
Returns the specified central moment of the elements of a vector.
Public methodStatic memberCoefficientOfVariation
Gets the coefficient of variation of a variable, if it exists.
Public methodStatic memberColumnMeansT
Returns a vector containing the means of the columns of a matrix.
Public methodStatic memberColumnStandardDeviations
Returns a vector containing the standard deviations of the columns of a matrix.
Public methodStatic memberColumnVariances
Returns a vector containing the variances of the columns of a matrix.
Public methodStatic memberCorrelation(Double, Double)
Gets the Pearson correlation coefficient between two sets of values.
Public methodStatic memberCorrelation(VectorDouble, VectorDouble)
Gets the Pearson correlation coefficient between two sets of values.
Public methodStatic memberCorrelationMatrix(IListVectorDouble)
Returns the correlation matrix for an array of numerical variables.
Public methodStatic memberCorrelationMatrixT(MatrixT)
Returns the correlation matrix for the columns in a matrix.
Public methodStatic memberCovariance
Gets the covariance between two sets of values.
Public methodStatic memberCovarianceMatrix(IListVectorDouble)
Returns the covariance matrix for an array of numerical variables.
Public methodStatic memberCovarianceMatrixT(MatrixT, MultipleMissingValueAction)
Returns the covariance matrix for the columns in a matrix.
Public methodStatic memberGeometricMean(Double)
Returns the geometric mean of the elements of an array.
Public methodStatic memberGeometricMean(Int32)
Returns the geometric mean of the elements of an array.
Public methodStatic memberGeometricMean(VectorDouble)
Returns the geometric mean of the elements of a vector.
Public methodStatic memberGeometricMeanT(VectorT)
Returns the geometric mean of the elements of a numerical variable.
Public methodStatic memberGetKurtosisEstimate
Returns an estimate for the kurtosis of the variable.
Public methodStatic memberGetMeanEstimate
Returns an estimate for the mean of the variable.
Public methodStatic memberGetSavitskyGolayCoefficients(Int32) Obsolete.
Constructs a vector containing the coefficients of a 2nd degree Savitsky-Golay filter with the specified parameters.
Public methodStatic memberGetSavitskyGolayCoefficients(Int32, Int32) Obsolete.
Constructs a vector containing the coefficients of a Savitsky-Golay filter with the specified span and polynomial degree.
Public methodStatic memberGetSavitskyGolayCoefficients(Int32, Int32, Int32) Obsolete.
Constructs a vector containing the coefficients of a symmetrical Savitsky-Golay filter with the specified parameters.
Public methodStatic memberGetSavitskyGolayCoefficients(Int32, Int32, Int32, Int32) Obsolete.
Constructs a vector containing the coefficients of a Savitsky-Golay filter or a derivative filter with the specified parameters.
Public methodStatic memberGetSkewnessEstimate
Returns an estimate for the skewness of a variable.
Public methodStatic memberGetStandardDeviationEstimate
Returns an estimate for the standard deviation of the variable.
Public methodStatic memberHarmonicMean(Double)
Returns the harmonic mean of the elements of an array.
Public methodStatic memberHarmonicMean(Int32)
Returns the harmonic mean of the elements of an array.
Public methodStatic memberHarmonicMean(VectorDouble)
Returns the harmonic mean of the elements of a vector.
Public methodStatic memberHarmonicMeanT(VectorT)
Returns the harmonic mean of the elements of a numerical variable.
Public methodStatic memberInterQuartileRange(Double)
Returns the inter-quartile range of the elements of an array.
Public methodStatic memberInterQuartileRange(Int32)
Returns the inter-quartile range of the elements of an array.
Public methodStatic memberInterQuartileRangeT(VectorT)
Returns the inter-quartile range of the elements of a numerical variable.
Public methodStatic memberKendallTauT
Returns Kendall's tau-b correlation coefficient between two sets of values.
Public methodStatic memberKurtosisT(T)
Returns the kurtosis supplement of the elements of an array.
Public methodStatic memberKurtosisT(VectorT)
Returns the kurtosis supplement of the elements of an array.
Public methodStatic memberMax(Double)
Returns the maximum value of the elements of an array.
Public methodStatic memberMaxT(IListT)
Returns the maximum value of the elements of a list.
Public methodStatic memberMaxT(IListT, IComparerT)
Returns the maximum value of the elements of an array.
Public methodStatic memberMean(DateTime)
Returns the mean of the elements of an array of DateTime values.
Public methodStatic memberMean(Double)
Returns the mean of the elements of an array.
Public methodStatic memberMean(IEnumerableDouble)
Returns the mean of the elements of a sequence.
Public methodStatic memberMean(Int32)
Returns the mean of the elements of an array.
Public methodStatic memberMeanT(VectorT)
Returns the mean of the elements of a vector.
Public methodStatic memberMedian(Double)
Returns the median of the elements of an array.
Public methodStatic memberMedian(Int32)
Returns the median of the elements of an array.
Public methodStatic memberMedianT(IListT)
Returns the median of the elements of an array.
Public methodStatic memberMedianT(VectorT)
Returns the median of the elements of a vector.
Public methodStatic memberMedianAbsoluteDeviation
Returns the median absolute deviation of a variable.
Public methodStatic memberMidMean
Returns the mean of the data values between the 25th and 75th percentiles.
Public methodStatic memberMin(Double)
Returns the minimum value of the elements of an array.
Public methodStatic memberMinT(IListT)
Returns the minimum value of the elements of a list.
Public methodStatic memberMinT(IListT, IComparerT)
Returns the maximum value of the elements of an array.
Public methodStatic memberMinMax(DateTime)
Returns the minimum and maximum value of the elements of an array.
Public methodStatic memberMinMax(Double)
Returns the minimum and maximum value of the elements of an array.
Public methodStatic memberMinMax(Int32)
Returns the minimum and maximum value of the elements of an array.
Public methodStatic memberMinMaxT(IListT)
Returns the maximum value of the elements of an array.
Public methodStatic memberMinMaxT(VectorT)
Returns the minimum and maximum value of the elements of a numerical variable.
Public methodStatic memberMinMaxT(IListT, IComparerT)
Returns the maximum value of the elements of an array.
Public methodStatic memberMoment(Int32, Int32)
Returns the specified raw moment of the elements of an array.
Public methodStatic memberMomentT(T, Int32)
Returns the specified raw moment of the elements of an array.
Public methodStatic memberMomentT(VectorT, Int32)
Returns the specified raw moment of the elements of an array.
Public methodStatic memberNearestCorrelationMatrix(SymmetricMatrixDouble)
Returns a positive semi-definite matrix close to a matrix.
Public methodStatic memberNearestCorrelationMatrix(SymmetricMatrixDouble, NearestCorrelationMatrixAlgorithm)
Returns a positive semi-definite matrix close to a matrix.
Public methodStatic memberNearestCorrelationMatrix(SymmetricMatrixDouble, NearestCorrelationMatrixAlgorithm, Double, Int32)
Returns a positive semi-definite matrix close to a matrix.
Public methodStatic memberPercentile(Double, Int32)
Gets the specified percentile.
Public methodStatic memberPercentile(VectorDouble, Double)
Gets the specified percentile.
Public methodStatic memberPercentileT(VectorT, Int32, Int32)
Gets the specified percentile.
Public methodStatic memberPercentiles(Double, Int32)
Gets the specified percentiles.
Public methodStatic memberPercentiles(VectorDouble, Int32)
Gets the specified percentiles.
Public methodStatic memberPercentilesT(VectorT, Int32)
Gets the specified percentiles.
Public methodStatic memberPopulationKurtosisT(T)
Returns the kurtosis supplement of the elements of an array.
Public methodStatic memberPopulationKurtosisT(VectorT)
Returns the kurtosis supplement of the elements of an array.
Public methodStatic memberPopulationSkewness(Int32)
Returns the skewness of the elements of an array.
Public methodStatic memberPopulationSkewnessT(T)
Returns the skewness of the elements of an array.
Public methodStatic memberPopulationSkewnessT(VectorT)
Returns the skewness of the elements of an array.
Public methodStatic memberPopulationStandardDeviation(DateTime)
Returns the standard deviation of the elements of an array.
Public methodStatic memberPopulationStandardDeviation(VectorDateTime)
Returns the standard deviation of the elements of a numerical variable.
Public methodStatic memberPopulationStandardDeviationT(IEnumerableT)
Returns the standard deviation of the elements of an array.
Public methodStatic memberPopulationStandardDeviationT(T)
Returns the standard deviation of the elements of an array.
Public methodStatic memberPopulationStandardDeviationT(VectorT)
Returns the standard deviation of the elements of a vector.
Public methodStatic memberPopulationVarianceT(IEnumerableT)
Returns the variance of the elements of an array.
Public methodStatic memberPopulationVarianceT(T)
Returns the variance of the elements of an array.
Public methodStatic memberPopulationVarianceT(VectorT)
Returns the variance of the elements of a vector.
Public methodStatic memberProcessMissingValues(Double, MissingValueAction)
Applies the specified action to the missing values in the values.
Public methodStatic memberProcessMissingValues(VectorDouble, MissingValueAction)
Applies the specified action to the missing values in the values.
Public methodStatic memberProcessMissingValues(Double, MissingValueAction, Double)
Applies the specified action to the missing values in the values.
Public methodStatic memberProcessMissingValues(VectorDouble, MissingValueAction, Double)
Applies the specified action to the missing values in the values.
Public methodStatic memberProcessMissingValues(Double, Double, MissingValueAction, Double)
Applies the specified action to the missing values in the values.
Public methodStatic memberProcessMissingValues(VectorDouble, Double, MissingValueAction, Double)
Applies the specified action to the missing values in the values.
Public methodStatic memberQuantile
Gets the specified quantile.
Public methodStatic memberQuantiles(Double, Double)
Gets the specified quantiles.
Public methodStatic memberQuantiles(VectorDouble, Double)
Gets the specified quantiles.
Public methodStatic memberQuantilesT(VectorT, Double)
Gets the specified quantiles.
Public methodStatic memberRange(VectorDouble)
Returns the range of the elements of a vector.
Public methodStatic memberRangeT(T)
Returns the range of the elements of an array.
Public methodStatic memberRangeT(VectorT)
Returns the range of the elements of a numerical variable.
Public methodStatic memberRankCorrelation(Double, Double)
Gets the Spearman rank correlation coefficient between two sets of values.
Public methodStatic memberRankCorrelation(VectorDouble, VectorDouble)
Gets the Spearman rank correlation coefficient between two sets of values.
Public methodStatic memberRanks(DateTime)
Returns the ranks of the observations.
Public methodStatic memberRanks(Double)
Returns the ranks of the observations.
Public methodStatic memberRanks(VectorDouble)
Returns the ranks of the observations.
Public methodStatic memberRanks(DateTime, RankTiebreaker, TimeSpan)
Returns the ranks of the observations.
Public methodStatic memberRanks(Double, RankTiebreaker, Double)
Returns the ranks of the observations.
Public methodStatic memberRanks(VectorDouble, RankTiebreaker, Double)
Returns the ranks of the observations.
Public methodStatic memberRootMeanSquare(DateTime)
Returns the root-mean-square of the elements of an array.
Public methodStatic memberRootMeanSquare(Double)
Returns the root-mean-square of the elements of an array.
Public methodStatic memberRootMeanSquare(Int32)
Returns the root-mean-square of the elements of an array.
Public methodStatic memberRootMeanSquare(VectorDouble)
Returns the root-mean-square of the elements of a vector.
Public methodStatic memberRowMeansT
Returns a vector containing the means of the rows of a matrix.
Public methodStatic memberRowStandardDeviations
Returns a vector containing the standard deviations of the rows of a matrix.
Public methodStatic memberRowVariances
Returns a vector containing the variances of the rows of a matrix.
Public methodStatic memberSkewnessT(T)
Returns the skewness of the elements of an array.
Public methodStatic memberSkewnessT(VectorT)
Returns the skewness of the elements of an array.
Public methodStatic memberStandardDeviation(DateTime)
Returns the standard deviation of the elements of an array.
Public methodStatic memberStandardDeviation(Double)
Returns the standard deviation of the elements of an array.
Public methodStatic memberStandardDeviation(IEnumerableDouble)
Returns the standard deviation of the elements of an array.
Public methodStatic memberStandardDeviation(Int32)
Returns the standard deviation of the elements of an array.
Public methodStatic memberStandardDeviation(VectorDateTime)
Returns the standard deviation of the elements of a numerical variable.
Public methodStatic memberStandardDeviation(VectorDouble)
Returns the standard deviation of the elements of a vector.
Public methodStatic memberStandardDeviationT(VectorT)
Returns the standard deviation of the elements of a vector.
Public methodStatic memberSum(Double)
Returns the sum of the elements of an array.
Public methodStatic memberSum(IEnumerableDouble)
Returns the sum of the elements of a sequence.
Public methodStatic memberSum(Int32)
Returns the sum of the elements of an array.
Public methodStatic memberSumT(VectorT)
Returns the sum of the observations in a VectorT.
Public methodStatic memberSumOfSquares(Double)
Returns the sum of the squares of the elements of an array.
Public methodStatic memberSumOfSquares(IEnumerableDouble)
Returns the sum of the squares of the elements of an array.
Public methodStatic memberSumOfSquares(Int32)
Returns the sum of the squares of the elements of an array.
Public methodStatic memberSumOfSquaresT(VectorT)
Returns the sum of the squares of the observations in a VectorT.
Public methodStatic memberTrimmedMean(Double, Double)
Returns the trimmed mean of the elements of an array.
Public methodStatic memberTrimmedMean(VectorDouble, Double)
Returns the trimmed mean of the elements of a vector.
Public methodStatic memberTrimmedMeanT(T, Double)
Returns the trimmed mean of the elements of a numerical variable.
Public methodStatic memberTrimmedMeanT(VectorT, Double)
Returns the trimmed mean of the elements of a numerical variable.
Public methodStatic memberTukeyScores(IListDouble)
Returns the Tukey scores corresponding to the specified ranks.
Public methodStatic memberTukeyScores(IListInt32)
Returns the Tukey scores corresponding to the specified ranks.
Public methodStatic memberVanDerWaerdenScores(IListDouble)
Returns the van der Waerden scores corresponding to the specified ranks.
Public methodStatic memberVanDerWaerdenScores(IListInt32)
Returns the van der Waerden scores corresponding to the specified ranks.
Public methodStatic memberVarianceT(IEnumerableT)
Returns the variance of the elements of a sequence.
Public methodStatic memberVarianceT(T)
Returns the variance of the elements of an array.
Public methodStatic memberVarianceT(VectorT)
Returns the variance of the elements of a vector.
Public methodStatic memberWeightedMean(VectorDouble, VectorDouble)
Returns the mean of the variable with observations weighted by the specified vector.
Public methodStatic memberWeightedMeanT(VectorT, VectorT)
Returns the mean of the variable with observations weighted by the specified vector.
Public methodStatic memberWeightedStandardDeviation(VectorDouble, VectorDouble)
Returns the standard deviation of the variable with observations weighted by the specified vector.
Public methodStatic memberWeightedStandardDeviationT(VectorT, VectorT)
Returns the standard deviation of the variable with observations weighted by the specified vector.
Public methodStatic memberWinsorizedMean
Returns the Winsorized mean of the variable..
Top
Remarks

Use the Stats class to do quick calculations on your values without loading it into one of the statistical variable classes. If you need to calculate multiple properties of your values, it is much more efficient to load the values into a variable first, and use the properties and methods of the variable class to obtain your results.

See Also

Reference

Extreme.Statistics Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.