Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Tests
    • AndersonDarlingDistribution Class
    • AndersonDarlingTest Class
    • AnovaPostHocTest Class
    • BartlettTest Class
    • ChiSquareGoodnessOfFitTest Class
    • Exactness Enumeration
    • FTest Class
    • GeneralizedEsdTest Class
    • GrubbsTest Class
    • HypothesisTest Class
    • HypothesisType Enumeration
    • KruskalWallisTest Class
    • LeveneTest Class
    • LeveneTestLocationMeasure Enumeration
    • LjungBoxTest Class
    • MannWhitneyTest(T) Class
    • McNemarTest Class
    • MultiSampleTest(T) Class
    • OneSampleChiSquareTest Class
    • OneSampleKolmogorovSmirnovTest Class
    • OneSampleTest Class
    • OneSampleTest(T) Class
    • OneSampleTTest Class
    • OneSampleZTest Class
    • OneSampleZTestOfProportion Class
    • RunsTest(T) Class
    • SamplePairing Enumeration
    • ShapiroWilkTest Class
    • SimpleHypothesisTest Class
    • StuartMaxwellTest Class
    • StudentizedRangeDistribution Class
    • TwoSampleKolmogorovSmirnovTest Class
    • TwoSampleTest Class
    • TwoSampleTest(T) Class
    • TwoSampleTTest Class
    • TwoSampleZTest Class
  • HypothesisTest Class
    • HypothesisTest Constructors
    • Properties
    • Methods
    • Fields

HypothesisTest Class

Extreme Optimization Numerical Libraries for .NET Professional
Serves as an abstract base class for classes that represent a hypothesis test.
Inheritance Hierarchy

SystemObject
  Extreme.Statistics.TestsHypothesisTest
    More...

Namespace:  Extreme.Statistics.Tests
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public abstract class HypothesisTest : ISummarizable
Public MustInherit Class HypothesisTest
	Implements ISummarizable
public ref class HypothesisTest abstract : ISummarizable
[<AbstractClassAttribute>]
type HypothesisTest =  
    class
        interface ISummarizable
    end

The HypothesisTest type exposes the following members.

Constructors

  NameDescription
Protected methodHypothesisTest(HypothesisType)
Constructs a new HypothesisTest object.
Protected methodHypothesisTest(HypothesisType, Double, ContinuousDistribution)
Constructs a new HypothesisTest object.
Top
Properties

  NameDescription
Public propertyDistribution
Gets the probability distribution used in the hypothesis test.
Public propertyHypothesisType
Gets or sets whether the test is one or two-tailed.
Public propertyName
Gets the name of the hypothesis test.
Public propertyPValue
Gets the probability that the test statistic would take on the calculated value under the alternate hypothesis.
Public propertySignificanceLevel
Gets the significance level used to test the null hypothesis.
Public propertyStatistic
Gets the value of the test statistic.
Top
Methods

  NameDescription
Protected methodCalculateStatistic
Evaluates the test statistic.
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetConfidenceInterval
Returns the confidence interval for the test parameter for the default confidence level.
Public methodGetConfidenceInterval(Double)
Returns the confidence interval for the test parameter for the specified confidence level.
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetLowerCriticalValue
Gets the lower critical value for the hypothesis test's current significance level.
Public methodGetLowerCriticalValue(Double)
Gets the lower critical value for the hypothesis test at the specified significance level.
Public methodGetPValue
Gets the probability that the test statistic would take on the calculated value under the specified alternate hypothesis.
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodGetUpperCriticalValue
Gets the upper critical value for the test statistic at the hypothesis test's current significance level.
Public methodGetUpperCriticalValue(Double)
Gets the upper critical value for the test statistic at the specified significance level.
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodReject
Returns whether the null hypothesis is rejected using the default significance level.
Public methodReject(Double)
Returns whether the null hypothesis is rejected using the specified significance level.
Public methodSummarize
Returns a string containing a human-readable summary of the object.
Public methodSummarize(SummaryOptions)
Returns a string containing a human-readable summary of the object using the specified options.
Public methodToString
Returns a string that represents the current object.
(Overrides ObjectToString.)
Top
Fields

  NameDescription
Public fieldStatic memberDefaultSignificanceLevel
Specifies the default significance level of 0.05.
Top
Remarks

The HypothesisTest class serves as the base class for all classes that implement statistical tests.

Most statistical tests follow a common pattern. A hypothesis is proposed, a Statistic is calculated based on the hypothesis. This statistic follows a distribution, which is used to calculated the probability, or PValue, that the hypothesis is false. If the probability is below a certain cut-off value, the SignificanceLevel, then the hypothesis is rejected.

Note to inheritors: If you need to implement a statistical test, then most likely you should derive the class from one of the specialized classes for tests involving one (OneSampleTest), two (TwoSampleTestT), or more (MultiSampleTestT) samples. Only in very rare instances will you need to inherit from HypothesisTest directly.

If you do, you must override CalculateStatistic. You must also set the Distribution property either in the constructor or in your CalculateStatistic implementation.

See Also

Reference

Extreme.Statistics.Tests Namespace
Inheritance Hierarchy

SystemObject
  Extreme.Statistics.TestsHypothesisTest
    Extreme.Statistics.TestsAnovaPostHocTest
    Extreme.Statistics.TestsMcNemarTest
    Extreme.Statistics.TestsMultiSampleTestT
    Extreme.Statistics.TestsOneSampleTestT
    Extreme.Statistics.TestsSimpleHypothesisTest
    Extreme.Statistics.TestsStuartMaxwellTest
    Extreme.Statistics.TestsTwoSampleTestT
    Extreme.Statistics.TestsTwoSampleZTest

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.