Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Tests
    • AndersonDarlingDistribution Class
    • AndersonDarlingTest Class
    • AnovaPostHocTest Class
    • BartlettTest Class
    • ChiSquareGoodnessOfFitTest Class
    • Exactness Enumeration
    • FTest Class
    • GeneralizedEsdTest Class
    • GrubbsTest Class
    • HypothesisTest Class
    • HypothesisType Enumeration
    • KruskalWallisTest Class
    • LeveneTest Class
    • LeveneTestLocationMeasure Enumeration
    • LjungBoxTest Class
    • MannWhitneyTest(T) Class
    • McNemarTest Class
    • MultiSampleTest(T) Class
    • OneSampleChiSquareTest Class
    • OneSampleKolmogorovSmirnovTest Class
    • OneSampleTest Class
    • OneSampleTest(T) Class
    • OneSampleTTest Class
    • OneSampleZTest Class
    • OneSampleZTestOfProportion Class
    • RunsTest(T) Class
    • SamplePairing Enumeration
    • ShapiroWilkTest Class
    • SimpleHypothesisTest Class
    • StuartMaxwellTest Class
    • StudentizedRangeDistribution Class
    • TwoSampleKolmogorovSmirnovTest Class
    • TwoSampleTest Class
    • TwoSampleTest(T) Class
    • TwoSampleTTest Class
    • TwoSampleZTest Class
  • MannWhitneyTest(T) Class
    • MannWhitneyTest(T) Constructors
    • Properties
    • Methods

MannWhitneyTestT Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents a non-parametric test that two samples are from the same distribution.
Inheritance Hierarchy

SystemObject
  Extreme.Statistics.TestsHypothesisTest
    Extreme.Statistics.TestsTwoSampleTestT
      Extreme.Statistics.TestsMannWhitneyTestT

Namespace:  Extreme.Statistics.Tests
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public sealed class MannWhitneyTest<T> : TwoSampleTest<T>
Public NotInheritable Class MannWhitneyTest(Of T)
	Inherits TwoSampleTest(Of T)
generic<typename T>
public ref class MannWhitneyTest sealed : public TwoSampleTest<T>
[<SealedAttribute>]
type MannWhitneyTest<'T> =  
    class
        inherit TwoSampleTest<'T>
    end

Type Parameters

T
The element type of the samples.

The MannWhitneyTestT type exposes the following members.

Constructors

  NameDescription
Public methodMannWhitneyTestT
Constructs a new Mann-Whitney test.
Public methodMannWhitneyTestT(VectorT, ICategoricalVector)
Constructs a new Mann-Whitney test for the specified samples.
Public methodMannWhitneyTestT(VectorT, VectorT)
Constructs a new Mann-Whitney test for the specified samples.
Top
Properties

  NameDescription
Public propertyDistribution
Gets the probability distribution used in the hypothesis test.
(Inherited from HypothesisTest.)
Public propertyExactness
Gets or sets whether an exact test should be performed.
Public propertyHypothesisType
Gets or sets whether the test is one or two-tailed.
(Inherited from HypothesisTest.)
Public propertyName
Gets the name of the hypothesis test.
(Overrides HypothesisTestName.)
Public propertyPValue
Gets the probability that the test statistic would take on the calculated value under the alternate hypothesis.
(Inherited from HypothesisTest.)
Public propertySample1
Gets or sets the first sample this test is being applied to.
(Inherited from TwoSampleTestT.)
Public propertySample2
Gets or sets the second sample this test is being applied to.
(Inherited from TwoSampleTestT.)
Public propertySignificanceLevel
Gets the significance level used to test the null hypothesis.
(Inherited from HypothesisTest.)
Public propertyStatistic
Gets the value of the test statistic.
(Inherited from HypothesisTest.)
Top
Methods

  NameDescription
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Public methodGetConfidenceInterval
Returns the confidence interval for the test parameter for the default confidence level.
(Inherited from HypothesisTest.)
Public methodGetConfidenceInterval(Double)
Returns the confidence interval for the test parameter for the specified confidence level.
(Inherited from HypothesisTest.)
Public methodGetCount
Returns the number of observations in the specified group.
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetLowerCriticalValue
Gets the lower critical value for the hypothesis test's current significance level.
(Inherited from HypothesisTest.)
Public methodGetLowerCriticalValue(Double)
Gets the lower critical value for the hypothesis test at the specified significance level.
(Inherited from HypothesisTest.)
Public methodGetMeanRank
Returns the mean of the ranks of the observations from the specified group.
Public methodGetPValue
Gets the probability that the test statistic would take on the calculated value under the specified alternate hypothesis.
(Inherited from HypothesisTest.)
Public methodGetSumOfRanks
Returns the sum of the ranks of the observations from the specified group.
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodGetUpperCriticalValue
Gets the upper critical value for the test statistic at the hypothesis test's current significance level.
(Inherited from HypothesisTest.)
Public methodGetUpperCriticalValue(Double)
Gets the upper critical value for the test statistic at the specified significance level.
(Inherited from HypothesisTest.)
Public methodReject
Returns whether the null hypothesis is rejected using the default significance level.
(Inherited from HypothesisTest.)
Public methodReject(Double)
Returns whether the null hypothesis is rejected using the specified significance level.
(Inherited from HypothesisTest.)
Public methodSummarize
Returns a string containing a human-readable summary of the object.
(Inherited from HypothesisTest.)
Public methodSummarize(SummaryOptions)
Returns a string containing a human-readable summary of the object using the specified options.
(Inherited from HypothesisTest.)
Public methodToString
Returns a string that represents the current object.
(Inherited from HypothesisTest.)
Top
Remarks

Use the MannWhitneyTestT class to test the hypothesis that two samples are drawn from the same distribution. The test uses the ranks in the combined sample. No assumptions are made about the distribution.

The test is also known as the Mann-Whitney-Wilcoxon test or the Wilcoxon rank-sum test.

For smaller sample sizes, an exact test is used under the assumption that there are no ties. For larger sample sizes (greater than 80), or when ties are present, the sampling distribution of the Mann-Whitney statistic is approximated by a normal distribution with a correction for tied values. This behavior can be overriden through the Exactness property.

See Also

Reference

Extreme.Statistics.Tests Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.