Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Tests
    • AndersonDarlingDistribution Class
    • AndersonDarlingTest Class
    • AnovaPostHocTest Class
    • BartlettTest Class
    • ChiSquareGoodnessOfFitTest Class
    • Exactness Enumeration
    • FTest Class
    • GeneralizedEsdTest Class
    • GrubbsTest Class
    • HypothesisTest Class
    • HypothesisType Enumeration
    • KruskalWallisTest Class
    • LeveneTest Class
    • LeveneTestLocationMeasure Enumeration
    • LjungBoxTest Class
    • MannWhitneyTest(T) Class
    • McNemarTest Class
    • MultiSampleTest(T) Class
    • OneSampleChiSquareTest Class
    • OneSampleKolmogorovSmirnovTest Class
    • OneSampleTest Class
    • OneSampleTest(T) Class
    • OneSampleTTest Class
    • OneSampleZTest Class
    • OneSampleZTestOfProportion Class
    • RunsTest(T) Class
    • SamplePairing Enumeration
    • ShapiroWilkTest Class
    • SimpleHypothesisTest Class
    • StuartMaxwellTest Class
    • StudentizedRangeDistribution Class
    • TwoSampleKolmogorovSmirnovTest Class
    • TwoSampleTest Class
    • TwoSampleTest(T) Class
    • TwoSampleTTest Class
    • TwoSampleZTest Class
  • StudentizedRangeDistribution Class
    • StudentizedRangeDistribution Constructor
    • Properties
    • Methods

StudentizedRangeDistribution Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents the studentized range distribution.
Inheritance Hierarchy

SystemObject
  Extreme.Statistics.DistributionsDistribution
    Extreme.Statistics.DistributionsContinuousDistribution
      Extreme.Statistics.TestsStudentizedRangeDistribution

Namespace:  Extreme.Statistics.Tests
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public class StudentizedRangeDistribution : ContinuousDistribution
Public Class StudentizedRangeDistribution
	Inherits ContinuousDistribution
public ref class StudentizedRangeDistribution : public ContinuousDistribution
type StudentizedRangeDistribution =  
    class
        inherit ContinuousDistribution
    end

The StudentizedRangeDistribution type exposes the following members.

Constructors

  NameDescription
Public methodStudentizedRangeDistribution
Constructs a new Studentized Range distribution object.
Top
Properties

  NameDescription
Public propertyDegreesOfFreedom
Gets the degrees of freedom of the distribution.
Public propertyEntropy
Gets the entropy of the distribution.
(Inherited from Distribution.)
Public propertyInterQuartileRange
Returns the inter-quartile range of this distribution.
(Inherited from ContinuousDistribution.)
Public propertyIsSymmetrical
Gets the sample size of the source populations.
(Overrides ContinuousDistributionIsSymmetrical.)
Public propertyIsUnimodal
Gets whether the distribution has one or more modes.
(Inherited from ContinuousDistribution.)
Public propertyKurtosis
Gets the kurtosis of the distribution.
(Inherited from Distribution.)
Public propertyMean
Gets the mean or expectation value of the distribution.
(Overrides DistributionMean.)
Public propertyMedian
Gets the median of the distribution.
(Inherited from ContinuousDistribution.)
Public propertyMode
Gets the mode of the distribution.
(Inherited from ContinuousDistribution.)
Public propertyNumberOfModes
Gets the number of modes of the distribution.
(Inherited from ContinuousDistribution.)
Public propertySampleSize
Gets the number of samples
Public propertySkewness
Gets the skewness of the distribution.
(Inherited from Distribution.)
Public propertyStandardDeviation
Gets the standard deviation of the distribution.
(Inherited from Distribution.)
Public propertyStatisticSymbol
Gets the common symbol to describe a statistic from the distribution.
(Overrides DistributionStatisticSymbol.)
Public propertySupport
Gets the support of the distribution.
(Inherited from ContinuousDistribution.)
Public propertyVariance
Gets the variance of the distribution.
(Overrides DistributionVariance.)
Top
Methods

  NameDescription
Public methodCdf
Evaluates the cumulative distribution function (CDF) of this distribution for the specified value.
(Inherited from ContinuousDistribution.)
Public methodDistributionFunction
Evaluates the cumulative distribution function (CDF) of this distribution for the specified value.
(Overrides ContinuousDistributionDistributionFunction(Double).)
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetAllModes
Returns an array that contains all the modes of the distribution.
(Inherited from ContinuousDistribution.)
Public methodGetExpectationValue(FuncDouble, Double)
Returns the expectation value of a function.
(Inherited from ContinuousDistribution.)
Public methodGetExpectationValue(FuncDouble, Double, Double, Double)
Returns the un-normalized expectation value of a function over the specified interval.
(Inherited from ContinuousDistribution.)
Public methodGetExpectedHistogram(Double, Double)
Gets a vector containing a histogram of the expected number of samples for a given total number of samples.
(Inherited from ContinuousDistribution.)
Public methodGetExpectedHistogram(IntervalIndexDouble, Double)
Gets a vector containing a histogram of the expected number of samples for a given total number of samples.
(Inherited from ContinuousDistribution.)
Public methodGetExpectedHistogram(Double, Double, Int32, Double)
Gets a vector whose bins contain the expected number of samples for a given total number of samples.
(Inherited from ContinuousDistribution.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetRandomSequence
Returns a sequence of random samples from the distribution.
(Inherited from ContinuousDistribution.)
Public methodGetRandomSequence(Random)
Returns a sequence of random samples from the distribution.
(Inherited from ContinuousDistribution.)
Public methodGetRandomSequence(Random, Int32)
Returns a sequence of random samples of the specified length from the distribution.
(Inherited from ContinuousDistribution.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodHazardFunction
Returns the probability of failure at the specified value.
(Inherited from ContinuousDistribution.)
Public methodInverseCdf
Returns the inverse of the DistributionFunction(Double).
(Inherited from ContinuousDistribution.)
Public methodInverseDistributionFunction
Returns the inverse of the DistributionFunction(Double).
(Overrides ContinuousDistributionInverseDistributionFunction(Double).)
Public methodLeftTailProbability
Returns the probability that a sample from the distribution is less than the specified value.
(Inherited from ContinuousDistribution.)
Public methodLogProbabilityDensityFunction
Returns the logarithm of the probability density function (PDF) of this distribution for the specified value.
(Inherited from ContinuousDistribution.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodMomentFunction
Returns the value of the moment function of the specified order.
(Inherited from ContinuousDistribution.)
Public methodPdf
Returns the value of the probability density function (PDF) of this distribution for the specified value.
(Inherited from ContinuousDistribution.)
Public methodProbability
Returns the probability that a sample taken from the distribution lies inside the specified interval.
(Inherited from ContinuousDistribution.)
Public methodProbabilityDensityFunction
Returns the value of the probability density function (PDF) of this distribution for the specified value.
(Overrides ContinuousDistributionProbabilityDensityFunction(Double).)
Public methodRightTailProbability
Returns the probability that a sample from the distribution is larger than the specified value.
(Inherited from ContinuousDistribution.)
Public methodSample
Returns a random sample from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSample(Int32)
Returns a vector of random samples from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSample(Random)
Returns a random sample from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSample(Int32, Random)
Returns a vector of random samples from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSampleInto(Random, IListDouble)
Fills a list with random numbers from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSampleInto(Random, IListDouble, Int32, Int32)
Fills part of a list with random numbers from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSurvivorDistributionFunction
Evaluates the survivor distribution function (SDF) of this distribution for the specified value.
(Inherited from ContinuousDistribution.)
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Public methodTwoTailedProbability
Returns the probability that a sample from the distribution deviates from the mean more than the specified value.
(Inherited from ContinuousDistribution.)
Top
Remarks

Use the StudentizedRangeDistribution class to represent the studentized range distribution for a given degrees of freedom and sample size. The distribution gives the range

See Also

Reference

Extreme.Statistics.Tests Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.