Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Tests
    • AndersonDarlingDistribution Class
    • AndersonDarlingTest Class
    • AnovaPostHocTest Class
    • BartlettTest Class
    • ChiSquareGoodnessOfFitTest Class
    • Exactness Enumeration
    • FTest Class
    • GeneralizedEsdTest Class
    • GrubbsTest Class
    • HypothesisTest Class
    • HypothesisType Enumeration
    • KruskalWallisTest Class
    • LeveneTest Class
    • LeveneTestLocationMeasure Enumeration
    • LjungBoxTest Class
    • MannWhitneyTest(T) Class
    • McNemarTest Class
    • MultiSampleTest(T) Class
    • OneSampleChiSquareTest Class
    • OneSampleKolmogorovSmirnovTest Class
    • OneSampleTest Class
    • OneSampleTest(T) Class
    • OneSampleTTest Class
    • OneSampleZTest Class
    • OneSampleZTestOfProportion Class
    • RunsTest(T) Class
    • SamplePairing Enumeration
    • ShapiroWilkTest Class
    • SimpleHypothesisTest Class
    • StuartMaxwellTest Class
    • StudentizedRangeDistribution Class
    • TwoSampleKolmogorovSmirnovTest Class
    • TwoSampleTest Class
    • TwoSampleTest(T) Class
    • TwoSampleTTest Class
    • TwoSampleZTest Class
  • TwoSampleTTest Class
    • TwoSampleTTest Constructors
    • Properties
    • Methods

TwoSampleTTest Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents a test that the difference between the population means of two samples is equal to a specific value.
Inheritance Hierarchy

SystemObject
  Extreme.Statistics.TestsHypothesisTest
    Extreme.Statistics.TestsTwoSampleTestDouble
      Extreme.Statistics.TestsTwoSampleTest
        Extreme.Statistics.TestsTwoSampleTTest

Namespace:  Extreme.Statistics.Tests
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public sealed class TwoSampleTTest : TwoSampleTest
Public NotInheritable Class TwoSampleTTest
	Inherits TwoSampleTest
public ref class TwoSampleTTest sealed : public TwoSampleTest
[<SealedAttribute>]
type TwoSampleTTest =  
    class
        inherit TwoSampleTest
    end

The TwoSampleTTest type exposes the following members.

Constructors

  NameDescription
Public methodTwoSampleTTest
Constructs a new unpaired TwoSampleTTest for the specified samples.
Public methodTwoSampleTTest(VectorDouble, VectorDouble)
Constructs a new unpaired TwoSampleTTest for the specified vector.
Public methodTwoSampleTTest(VectorDouble, VectorDouble, Double)
Constructs a new unpaired TwoSampleTTest for the specified samples.
Public methodTwoSampleTTest(VectorDouble, VectorDouble, SamplePairing, Boolean)
Constructs a new TwoSampleTTest for the specified vector.
Public methodTwoSampleTTest(VectorDouble, VectorDouble, Double, SamplePairing, Boolean, HypothesisType)
Constructs a new TwoSampleTTest for the specified vector.
Public methodTwoSampleTTest(Int32, Double, Double, Int32, Double, Double, Double, SamplePairing, Boolean, HypothesisType)
Constructs a new unpaired TwoSampleTTest for the specified samples.
Top
Properties

  NameDescription
Public propertyAssumeEqualVariances
Gets or sets whether the variances of the two samples are assumed to be equal.
Public propertyCount1
Gets or sets the number of observations of the first sample.
Public propertyCount2
Gets or sets the number of observations of the second sample.
Public propertyDegreesOfFreedom
Gets the degrees of freedom of the test.
Public propertyDifference
Gets or sets the proposed difference between the two means.
Public propertyDistribution
Gets the probability distribution used in the hypothesis test.
(Inherited from HypothesisTest.)
Public propertyHypothesisType
Gets or sets whether the test is one or two-tailed.
(Inherited from HypothesisTest.)
Public propertyMean1
Gets or sets the mean of the first sample.
Public propertyMean2
Gets or sets the mean of the second sample.
Public propertyName
Gets the name of the hypothesis test.
(Overrides HypothesisTestName.)
Public propertyPairing
Gets or sets whether the test is paired or unpaired.
Public propertyPValue
Gets the probability that the test statistic would take on the calculated value under the alternate hypothesis.
(Inherited from HypothesisTest.)
Public propertySample1
Gets or sets the first sample this test is being applied to.
(Inherited from TwoSampleTestT.)
Public propertySample2
Gets or sets the second sample this test is being applied to.
(Inherited from TwoSampleTestT.)
Public propertySignificanceLevel
Gets the significance level used to test the null hypothesis.
(Inherited from HypothesisTest.)
Public propertyStatistic
Gets the value of the test statistic.
(Inherited from HypothesisTest.)
Public propertyVariance1
Gets or sets the variance of the first sample.
Public propertyVariance2
Gets or sets the variance of the second sample.
Top
Methods

  NameDescription
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Public methodGetConfidenceInterval
Returns the confidence interval for the test parameter for the default confidence level.
(Inherited from HypothesisTest.)
Public methodGetConfidenceInterval(Double)
Returns the confidence interval for the test parameter for the specified confidence level.
(Inherited from HypothesisTest.)
Public methodGetDifferenceEstimate
Gets the estimated value of the difference between the two samples.
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetLowerCriticalValue
Gets the lower critical value for the hypothesis test's current significance level.
(Inherited from HypothesisTest.)
Public methodGetLowerCriticalValue(Double)
Gets the lower critical value for the hypothesis test at the specified significance level.
(Inherited from HypothesisTest.)
Public methodGetPValue
Gets the probability that the test statistic would take on the calculated value under the specified alternate hypothesis.
(Inherited from HypothesisTest.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodGetUpperCriticalValue
Gets the upper critical value for the test statistic at the hypothesis test's current significance level.
(Inherited from HypothesisTest.)
Public methodGetUpperCriticalValue(Double)
Gets the upper critical value for the test statistic at the specified significance level.
(Inherited from HypothesisTest.)
Public methodReject
Returns whether the null hypothesis is rejected using the default significance level.
(Inherited from HypothesisTest.)
Public methodReject(Double)
Returns whether the null hypothesis is rejected using the specified significance level.
(Inherited from HypothesisTest.)
Public methodSummarize
Returns a string containing a human-readable summary of the object.
(Inherited from HypothesisTest.)
Public methodSummarize(SummaryOptions)
Returns a string containing a human-readable summary of the object using the specified options.
(Inherited from HypothesisTest.)
Public methodToString
Returns a string that represents the current object.
(Inherited from HypothesisTest.)
Top
Remarks

Use the TwoSampleTTest class to test the hypothesis that the difference between two population means are equal to a specific value.

The test can be either paired or unpaired. In a paired test, each observation in the first sample has a corresponding observation in the second sample.

An example of an unpaired test is one that compares the average height of men and women by choosing random samples of each group. An example of an unpaired test is one that compares the height of fathers to that of their sons.

See Also

Reference

Extreme.Statistics.Tests Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.