Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Tests
    • AndersonDarlingDistribution Class
    • AndersonDarlingTest Class
    • AnovaPostHocTest Class
    • BartlettTest Class
    • ChiSquareGoodnessOfFitTest Class
    • Exactness Enumeration
    • FTest Class
    • GeneralizedEsdTest Class
    • GrubbsTest Class
    • HypothesisTest Class
    • HypothesisType Enumeration
    • KruskalWallisTest Class
    • LeveneTest Class
    • LeveneTestLocationMeasure Enumeration
    • LjungBoxTest Class
    • MannWhitneyTest(T) Class
    • McNemarTest Class
    • MultiSampleTest(T) Class
    • OneSampleChiSquareTest Class
    • OneSampleKolmogorovSmirnovTest Class
    • OneSampleTest Class
    • OneSampleTest(T) Class
    • OneSampleTTest Class
    • OneSampleZTest Class
    • OneSampleZTestOfProportion Class
    • RunsTest(T) Class
    • SamplePairing Enumeration
    • ShapiroWilkTest Class
    • SimpleHypothesisTest Class
    • StuartMaxwellTest Class
    • StudentizedRangeDistribution Class
    • TwoSampleKolmogorovSmirnovTest Class
    • TwoSampleTest Class
    • TwoSampleTest(T) Class
    • TwoSampleTTest Class
    • TwoSampleZTest Class
  • TwoSampleZTest Class
    • TwoSampleZTest Constructors
    • Properties
    • TwoSampleZTest Methods

TwoSampleZTest Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents a test that the difference between two proportions of independent samples is significant.
Inheritance Hierarchy

SystemObject
  Extreme.Statistics.TestsHypothesisTest
    Extreme.Statistics.TestsTwoSampleZTest

Namespace:  Extreme.Statistics.Tests
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public sealed class TwoSampleZTest : HypothesisTest
Public NotInheritable Class TwoSampleZTest
	Inherits HypothesisTest
public ref class TwoSampleZTest sealed : public HypothesisTest
[<SealedAttribute>]
type TwoSampleZTest =  
    class
        inherit HypothesisTest
    end

The TwoSampleZTest type exposes the following members.

Constructors

  NameDescription
Public methodTwoSampleZTest
Constructs a new unpaired TwoSampleZTest for the specified samples.
Public methodTwoSampleZTest(Int32, Double, Int32, Double, Double, HypothesisType)
Constructs a new TwoSampleZTest for the specified samples.
Top
Properties

  NameDescription
Public propertyCount1
Gets or sets the number of observations of the first sample.
Public propertyCount2
Gets or sets the number of observations of the second sample.
Public propertyDifference
Gets or sets the proposed difference between the two means.
Public propertyDistribution
Gets the probability distribution used in the hypothesis test.
(Inherited from HypothesisTest.)
Public propertyHypothesisType
Gets or sets whether the test is one or two-tailed.
(Inherited from HypothesisTest.)
Public propertyName
Gets the name of the hypothesis test.
(Overrides HypothesisTestName.)
Public propertyProportion1
Gets or sets the proportion for the first sample.
Public propertyProportion2
Gets or sets the proportion for the second sample.
Public propertyPValue
Gets the probability that the test statistic would take on the calculated value under the alternate hypothesis.
(Inherited from HypothesisTest.)
Public propertySignificanceLevel
Gets the significance level used to test the null hypothesis.
(Inherited from HypothesisTest.)
Public propertyStatistic
Gets the value of the test statistic.
(Inherited from HypothesisTest.)
Top
Methods

  NameDescription
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Public methodGetConfidenceInterval
Returns the confidence interval for the test parameter for the default confidence level.
(Inherited from HypothesisTest.)
Public methodGetConfidenceInterval(Double)
Returns the confidence interval for the test parameter for the specified confidence level.
(Inherited from HypothesisTest.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetLowerCriticalValue
Gets the lower critical value for the hypothesis test's current significance level.
(Inherited from HypothesisTest.)
Public methodGetLowerCriticalValue(Double)
Gets the lower critical value for the hypothesis test at the specified significance level.
(Inherited from HypothesisTest.)
Public methodGetPValue
Gets the probability that the test statistic would take on the calculated value under the specified alternate hypothesis.
(Inherited from HypothesisTest.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodGetUpperCriticalValue
Gets the upper critical value for the test statistic at the hypothesis test's current significance level.
(Inherited from HypothesisTest.)
Public methodGetUpperCriticalValue(Double)
Gets the upper critical value for the test statistic at the specified significance level.
(Inherited from HypothesisTest.)
Public methodReject
Returns whether the null hypothesis is rejected using the default significance level.
(Inherited from HypothesisTest.)
Public methodReject(Double)
Returns whether the null hypothesis is rejected using the specified significance level.
(Inherited from HypothesisTest.)
Public methodSummarize
Returns a string containing a human-readable summary of the object.
(Inherited from HypothesisTest.)
Public methodSummarize(SummaryOptions)
Returns a string containing a human-readable summary of the object using the specified options.
(Inherited from HypothesisTest.)
Public methodToString
Returns a string that represents the current object.
(Inherited from HypothesisTest.)
Top
Remarks

Use the TwoSampleZTest class to test the hypothesis that the difference between proportions of independent samples is significant.

See Also

Reference

Extreme.Statistics.Tests Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.