Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Statistics Library User's Guide
    • Statistical Variables
    • Numerical Variables
    • Statistical Models
    • Regression Analysis
    • Analysis of Variance
    • Time Series Analysis
    • Multivariate Analysis
    • Continuous Distributions
    • Discrete Distributions
    • Multivariate Distributions
    • Kernel Density Estimation
    • Hypothesis Tests
    • Appendices
  • Continuous Distributions
    • Continuous Distributions
    • The Beta Distribution
    • The Cauchy Distribution
    • The Chi Square Distribution
    • The Erlang Distribution
    • The Exponential Distribution
    • The F Distribution
    • The Gamma Distribution
    • The Generalized Pareto Distribution
    • The Gumbel Distribution
    • The Laplace Distribution
    • The Logistic Distribution
    • Log-Logistic Distribution
    • The Lognormal Distribution
    • The Non-central Beta Distribution
    • The Non-central Chi Square Distribution
    • The Non-central F Distribution
    • The Non-central Student t distribution
    • The Normal Distribution
    • The Pareto Distribution
    • The Rayleigh Distribution
    • Student's t Distribution
    • The Transformed Beta Distribution
    • The Transformed Gamma Distribution
    • The Triangular Distribution
    • The Continuous Uniform Distribution
    • The Weibull Distribution
  • Student's t Distribution

Student's t Distribution

Extreme Optimization Numerical Libraries for .NET Professional

Student's t distribution is commonly used to test if the difference between the means of two samples is statistically significant. It is a variation of the normal distribution that takes into account that the mean of a sample is only an estimate for the mean of the population.

The Student t distribution has one shape parameter: the degrees of freedom, commonly denoted by the Greek letter ν. The probability density function is:

Probability density of Student's t distribution.

The Student t distribution is implemented by the StudentTDistribution class. It has one constructor with the degrees of freedom as its only argument.

The following constructs the Student t distribution with 8 degrees of freedom:

C#
VB
C++
F#
Copy
var studentT = new StudentTDistribution(8);
Dim studentT = New StudentTDistribution(8)

No code example is currently available or this language may not be supported.

let studentT = StudentTDistribution(8.0)

The StudentTDistribution class has one specific properties, DegreesOfFreedom, which returns the degrees of freedom of the distribution.

StudentTDistribution has one static (Shared in Visual Basic) method, Sample, which generates a random sample using a user-supplied uniform random number generator. The second and third parameters are the location and scale parameters of the distribution.

C#
VB
C++
F#
Copy
var random = new MersenneTwister();
double sample = StudentTDistribution.Sample(random, 8);
Dim random = New MersenneTwister()
Dim sample = StudentTDistribution.Sample(random, 8)

No code example is currently available or this language may not be supported.

let random = MersenneTwister()
let sample = StudentTDistribution.Sample(random, 8.0)

The above example uses the MersenneTwister class to generate uniform random numbers.

For details of the properties and methods common to all continuous distribution classes, see the topic on continuous distributions..

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.