Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.DataAnalysis
    • Accumulator(T, U) Class
    • Aggregator(T, U) Class
    • Aggregator2(T, U) Class
    • Aggregator2Group Class
    • Aggregator2Group(T) Class
    • AggregatorGroup Class
    • AggregatorGroup(T) Class
    • Aggregators Class
    • BoundaryIntervalBehavior Enumeration
    • CategoricalEncoding Class
    • DataFrame Class
    • DataFrame(R, C) Class
    • DataFrameRow(R, C) Class
    • DateTimeExtensions Class
    • DateTimeUnit Enumeration
    • Direction Enumeration
    • Grouping Class
    • Grouping(TKey) Class
    • Histogram Class
    • Histogram(T) Class
    • IAccumulator(T, U) Interface
    • IAccumulator2(T, U) Interface
    • IAccumulator2(T, U, V) Interface
    • IAggregator Interface
    • IAggregator(T) Interface
    • IAggregator2 Interface
    • IAggregator2(T) Interface
    • IDataFrame Interface
    • IGrouping Interface
    • IIndex Interface
    • Index Class
    • Index(T) Class
    • IntervalIndex(T) Class
    • IPivot Interface
    • JoinIndex Class
    • JoinType Enumeration
    • MissingValueAction Enumeration
    • MissingValueException Class
    • MultipleMissingValueAction Enumeration
    • Parameter(T) Class
    • ParameterVector(T) Class
    • Pivot Class
    • Pivot(R, C) Class
    • RankTiebreaker Enumeration
    • Recurrence Class
    • SortOrder Enumeration
    • SpecialBins Enumeration
    • Subset Class
    • TransformedParameter(T) Class
    • TypePreservingAggregatorGroup Class
    • VectorExtensions Class
  • Histogram Class
    • Methods

Histogram Class

Extreme Optimization Numerical Libraries for .NET Professional
Contains methods for creating and working with histograms.
Contains methods for creating and working with one and two-dimensional histograms.
Inheritance Hierarchy

SystemObject
  Extreme.DataAnalysisHistogram

Namespace:  Extreme.DataAnalysis
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public static class Histogram
<ExtensionAttribute>
Public NotInheritable Class Histogram
[ExtensionAttribute]
public ref class Histogram abstract sealed
[<AbstractClassAttribute>]
[<SealedAttribute>]
[<ExtensionAttribute>]
type Histogram =  class end

The Histogram type exposes the following members.

Methods

  NameDescription
Public methodStatic memberCreateT
Creates a new histogram.
Public methodStatic memberCreateEmpty(Int32, Int32)
Returns an empty histogram using the specified bin arrangement.
Public methodStatic memberCreateEmptyT(IndexT)
Returns a histogram of a vector using the specified bin arrangement.
Public methodStatic memberCreateEmptyT(IListT, SpecialBins)
Returns an empty histogram using the specified bin arrangement.
Public methodStatic memberCreateEmptyT(T, T, Int32)
Returns an empty histogram using the specified bin arrangement.
Public methodStatic memberCreateHistogram(ICategoricalVector)
Returns a histogram of the counts for each value in a vector.
Public methodStatic memberCreateHistogramT(CategoricalVectorT)
Returns a new histogram of the counts for each value in a vector.
Public methodStatic memberCreateHistogramT(CategoricalVectorT, VectorDouble)
Returns a new histogram of the counts for each value in a vector.
Public methodStatic memberCreateHistogramT(IListT, IntervalIndexT)
Returns a histogram of a vector using the specified bin arrangement.
Public methodStatic memberCreateHistogramT(IListT, IntervalIndexT, IListDouble)
Returns a histogram of a vector using the specified bin arrangement.
Public methodStatic memberCreateHistogramT(IListT, T, T, Int32, SpecialBins)
Returns a histogram of a vector using the specified bin arrangement.
Public methodStatic memberCreateHistogramT(VectorT, T, T, Int32, VectorDouble)
Returns a histogram of a vector using the specified bin arrangement.
Public methodStatic memberCreateHistogram2D(ICategoricalVector, ICategoricalVector)
Returns a two-dimensional histogram of the values in two categorical vectors.
Public methodStatic memberCreateHistogram2D(ICategoricalVector, ICategoricalVector, VectorDouble)
Returns a two-dimensional histogram of the values in two categorical vectors.
Public methodStatic memberCreateHistogram2DT, U(VectorT, IntervalIndexT, VectorU, IntervalIndexU)
Returns a two-dimensional histogram of the values in two vectors.
Public methodStatic memberCreateHistogram2DT, U(VectorT, IntervalIndexT, VectorU, IntervalIndexU, VectorDouble)
Returns a two-dimensional histogram of the values in two vectors.
Public methodStatic memberFindBinT
Finds the interval that contains the given value.
Public methodStatic memberGetBoundsT
Gets an array containing the bounds of the bins in a Histogram.
Public methodStatic memberIncrementT(HistogramT, T)
Increments a bin of a histogram by 1.
Public methodStatic memberIncrementT(HistogramIntervalT, T)
Increments the bin of a histogram that contains the specified value by 1.
Public methodStatic memberIncrementT(HistogramT, T, Double)
Increments a bin of a histogram by the specified amount.
Public methodStatic memberIncrementT(HistogramIntervalT, T, Double)
Increments a bin of a histogram whose range contains a value by the specified amount.
Public methodStatic memberTabulateT(HistogramT, IEnumerableT)
Enters data from a sequence of values into a histogram.
Public methodStatic memberTabulateT(HistogramIntervalT, IEnumerableT)
Enters data from a sequence of values into a histogram.
Public methodStatic memberTabulateT(HistogramT, IListT, IListDouble)
Enters data from a list of values into a histogram using the specified weights.
Public methodStatic memberTabulateT(HistogramIntervalT, IListT, IListDouble)
Enters data from a list of values into a histogram using the specified weights.
Public methodStatic memberTryFindBinT
Tries to find the interval that contains the given value.
Top
See Also

Reference

Extreme.DataAnalysis Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.