Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.LinearAlgebra
    • BandMatrix(T) Class
    • BlockVector(T) Class
    • CholeskyDecomposition(T) Class
    • CloningMethod Enumeration
    • ColumnCollection(T) Structure
    • ComplexSingularValueDecomposition(T) Class
    • ComponentReadOnlyException Class
    • ComposedComplexMatrix(T) Class
    • ComposedComplexVector(T) Class
    • ConstantMatrix(T) Class
    • ConstantVector(T) Class
    • Decomposition(T) Class
    • DenseMatrix(T) Class
    • DenseVector(T) Class
    • DiagonalMatrix(T) Class
    • EigenvalueDecomposition(T) Class
    • EigenvalueRange Enumeration
    • GeneralizedDecomposition(T) Class
    • GeneralizedEigenvalueDecomposition(T) Class
    • GeneralizedSingularValueDecomposition(T) Class
    • GeneralizedSingularValueDecompositionFactors Enumeration
    • HermitianMatrix(T) Class
    • IndexedVector(T) Class
    • IndexValuePair(T) Structure
    • IResizableMatrix(T) Interface
    • LeastSquaresSolutionMethod Enumeration
    • LeastSquaresSolver(T) Class
    • LinearAlgebraOperations Class
    • LinearOperator(T) Class
    • LQDecomposition(T) Class
    • LUDecomposition(T) Class
    • MatrixNotPositiveDefiniteException Class
    • MatrixSingularException Class
    • MatrixView(T) Class
    • NonHermitianEigenvalueDecomposition(T) Class
    • NonNegativeMatrixFactorization(T) Class
    • PermutationMatrix Class
    • PivotVector Structure
    • QLDecomposition(T) Class
    • QRDecomposition(T) Class
    • RealEigenvalueDecomposition(T) Class
    • RowCollection(T) Structure
    • RowColumnValueTriplet(T) Structure
    • RQDecomposition(T) Class
    • SingularValueDecomposition(T) Class
    • SingularValueDecompositionFactors Enumeration
    • SparseCompressedColumnMatrix(T) Class
    • SparseMatrix(T) Class
    • SparseVector(T) Class
    • SymmetricIndefiniteDecomposition(T) Class
    • SymmetricMatrix(T) Class
    • TriangularMatrix(T) Class
  • QRDecomposition(T) Class
    • QRDecomposition(T) Constructor
    • Properties
    • Methods
  • Methods
    • ApplyQ Method Overloads
    • Decompose Method
    • Deconstruct Method Overloads
    • EstimateConditionNumber Method
    • GetDeterminant Method
    • GetInverse Method Overloads
    • LeastSquaresSolveInto Method Overloads
    • Rank Method Overloads
    • SolveInto Method Overloads
  • EstimateConditionNumber Method

QRDecompositionTEstimateConditionNumber Method

Extreme Optimization Numerical Libraries for .NET Professional
Calculates an estimate for the condition number of the matrix.

Namespace:  Extreme.Mathematics.LinearAlgebra
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public override T EstimateConditionNumber()
Public Overrides Function EstimateConditionNumber As T
public:
virtual T EstimateConditionNumber() override
abstract EstimateConditionNumber : unit -> 'T 
override EstimateConditionNumber : unit -> 'T 

Return Value

Type: T
An estimate for the condition number of the MatrixT.
Remarks

The condition number of a matrix is defined as the ratio of its largest to its smallest singular value. Because the calculation of singular values is a very expensive operation, an estimate that is cheaper to calculate is usually preferred.

The condition number gives an indication of the worst case loss of precision when solving a system of simultaneous linear equations.

The condition number of a singular matrix is infinite.

See Also

Reference

QRDecompositionT Class
Extreme.Mathematics.LinearAlgebra Namespace
Extreme.Mathematics.LinearAlgebraLinearOperatorT

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.