Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Mathematics.LinearAlgebra
    • BandMatrix(T) Class
    • BlockVector(T) Class
    • CholeskyDecomposition(T) Class
    • CloningMethod Enumeration
    • ColumnCollection(T) Structure
    • ComplexSingularValueDecomposition(T) Class
    • ComponentReadOnlyException Class
    • ComposedComplexMatrix(T) Class
    • ComposedComplexVector(T) Class
    • ConstantMatrix(T) Class
    • ConstantVector(T) Class
    • Decomposition(T) Class
    • DenseMatrix(T) Class
    • DenseVector(T) Class
    • DiagonalMatrix(T) Class
    • EigenvalueDecomposition(T) Class
    • EigenvalueRange Enumeration
    • GeneralizedDecomposition(T) Class
    • GeneralizedEigenvalueDecomposition(T) Class
    • GeneralizedSingularValueDecomposition(T) Class
    • GeneralizedSingularValueDecompositionFactors Enumeration
    • HermitianMatrix(T) Class
    • IndexedVector(T) Class
    • IndexValuePair(T) Structure
    • IResizableMatrix(T) Interface
    • LeastSquaresSolutionMethod Enumeration
    • LeastSquaresSolver(T) Class
    • LinearAlgebraOperations Class
    • LinearOperator(T) Class
    • LQDecomposition(T) Class
    • LUDecomposition(T) Class
    • MatrixNotPositiveDefiniteException Class
    • MatrixSingularException Class
    • MatrixView(T) Class
    • NonHermitianEigenvalueDecomposition(T) Class
    • NonNegativeMatrixFactorization(T) Class
    • PermutationMatrix Class
    • PivotVector Structure
    • QLDecomposition(T) Class
    • QRDecomposition(T) Class
    • RealEigenvalueDecomposition(T) Class
    • RowCollection(T) Structure
    • RowColumnValueTriplet(T) Structure
    • RQDecomposition(T) Class
    • SingularValueDecomposition(T) Class
    • SingularValueDecompositionFactors Enumeration
    • SparseCompressedColumnMatrix(T) Class
    • SparseMatrix(T) Class
    • SparseVector(T) Class
    • SymmetricIndefiniteDecomposition(T) Class
    • SymmetricMatrix(T) Class
    • TriangularMatrix(T) Class
  • QRDecomposition(T) Class
    • QRDecomposition(T) Constructor
    • Properties
    • Methods
  • Methods
    • ApplyQ Method Overloads
    • Decompose Method
    • Deconstruct Method Overloads
    • EstimateConditionNumber Method
    • GetDeterminant Method
    • GetInverse Method Overloads
    • LeastSquaresSolveInto Method Overloads
    • Rank Method Overloads
    • SolveInto Method Overloads
  • GetDeterminant Method

QRDecompositionTGetDeterminant Method

Extreme Optimization Numerical Libraries for .NET Professional
Calculates the determinant of the decomposed matrix.

Namespace:  Extreme.Mathematics.LinearAlgebra
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public override T GetDeterminant()
Public Overrides Function GetDeterminant As T
public:
virtual T GetDeterminant() override
abstract GetDeterminant : unit -> 'T 
override GetDeterminant : unit -> 'T 

Return Value

Type: T
The determinant of the matrix.
Exceptions

ExceptionCondition
DimensionMismatchExceptionThe matrix is not square.
Remarks

A system of simultaneous linear equations has a unique solution if its determinant is not equal to zero.

Determinants are only defined for square matrices. If the matrix is not square, an exception of type DimensionMismatchException is thrown.

For a QR factorized matrix A = QR, the magnitude of the determinant is the product of the diagonal elements of R. Since Q is orthogonal, its determinant is 1 or -1.

See Also

Reference

QRDecompositionT Class
Extreme.Mathematics.LinearAlgebra Namespace
Extreme.Mathematics.LinearAlgebraLinearOperatorT

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.