Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Distributions
    • ArcsineDistribution Class
    • BernoulliDistribution Class
    • BetaDistribution Class
    • BinomialDistribution Class
    • CauchyDistribution Class
    • ChiSquareDistribution Class
    • ContinuousDistribution Class
    • ContinuousUniformDistribution Class
    • DirichletDistribution Class
    • DiscreteDistribution Class
    • DiscreteDistribution(T) Class
    • DiscreteUniformDistribution Class
    • Distribution Class
    • ErlangDistribution Class
    • EstimationMethod Enumeration
    • ExponentialDistribution Class
    • FDistribution Class
    • GammaDistribution Class
    • GaussianMixtureDistribution Class
    • GeneralizedParetoDistribution Class
    • GenericDiscreteDistribution Class
    • GeometricDistribution Class
    • GumbelDistribution Class
    • HyperbolicDistribution Class
    • HypergeometricDistribution Class
    • InverseChiSquareDistribution Class
    • InverseGammaDistribution Class
    • InverseGaussianDistribution Class
    • InverseWeibullDistribution Class
    • JohnsonDistribution Class
    • JohnsonDistributionType Enumeration
    • LaplaceDistribution Class
    • LogarithmicSeriesDistribution Class
    • LogisticDistribution Class
    • LogLogisticDistribution Class
    • LognormalDistribution Class
    • MaxwellDistribution Class
    • MultivariateContinuousDistribution Class
    • MultivariateNormalDistribution Class
    • NegativeBinomialDistribution Class
    • NonCentralBetaDistribution Class
    • NonCentralChiSquareDistribution Class
    • NonCentralFDistribution Class
    • NonCentralStudentTDistribution Class
    • NormalDistribution Class
    • NormalInverseGaussianDistribution Class
    • ParetoDistribution Class
    • ParetoDistributionVariant Enumeration
    • PertDistribution Class
    • PiecewiseDistribution Class
    • PoissonDistribution Class
    • RandomExtensions Class
    • RayleighDistribution Class
    • StudentTDistribution Class
    • TransformedBetaDistribution Class
    • TransformedGammaDistribution Class
    • TriangularDistribution Class
    • TruncatedDistribution Class
    • WeibullDistribution Class
    • WishartDistribution Class
  • MultivariateNormalDistribution Class
    • MultivariateNormalDistribution Constructors
    • MultivariateNormalDistribution Properties
    • Methods

MultivariateNormalDistribution Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents a multivariate normal distribution.
Inheritance Hierarchy

SystemObject
  Extreme.Statistics.DistributionsMultivariateContinuousDistribution
    Extreme.Statistics.DistributionsMultivariateNormalDistribution

Namespace:  Extreme.Statistics.Distributions
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
[SerializableAttribute]
public sealed class MultivariateNormalDistribution : MultivariateContinuousDistribution
<SerializableAttribute>
Public NotInheritable Class MultivariateNormalDistribution
	Inherits MultivariateContinuousDistribution
[SerializableAttribute]
public ref class MultivariateNormalDistribution sealed : public MultivariateContinuousDistribution
[<SealedAttribute>]
[<SerializableAttribute>]
type MultivariateNormalDistribution =  
    class
        inherit MultivariateContinuousDistribution
    end

The MultivariateNormalDistribution type exposes the following members.

Constructors

  NameDescription
Public methodMultivariateNormalDistribution(Int32)
Constructs a new MultivariateNormalDistribution with mean equal to zero and standard deviation equal to 1.
Public methodMultivariateNormalDistribution(MatrixDouble)
Estimates the parameters of the distribution of a set of observations assuming it follows a multivariate normal distribution.
Public methodMultivariateNormalDistribution(VectorDouble)
Constructs a new MultivariateNormalDistribution with specified mean and standard deviation equal to 1.
Public methodMultivariateNormalDistribution(VectorDouble)
Estimates the parameters of the distribution of a variable assuming it follows a normal distribution.
Public methodMultivariateNormalDistribution(VectorDouble, MatrixDouble)
Constructs a new MultivariateNormalDistribution with specified mean and standard deviation.
Top
Properties

  NameDescription
Public propertyOrder
Gets the number of dimensions of the distribution.
(Inherited from MultivariateContinuousDistribution.)
Top
Methods

  NameDescription
Public methodStatic memberCreateStandard
Represents the standard MultivariateNormalDistribution.
Public methodDistributionFunction
Returns the cumulative distribution function (CDF) of this distribution for the specified value.
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Public methodFillSample(Random, VectorDouble)
Fills a vector with a random sample from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodFillSample(Random, Double)
Fills a Double array with random numbers.
(Inherited from MultivariateContinuousDistribution.)
Public methodFillSamples
Fills the rows of a matrix with random samples from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetMeans
Returns the mean or expectation value of the distribution.
(Overrides MultivariateContinuousDistributionGetMeans.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodGetVarianceCovarianceMatrix
Returns the variance of the distribution.
(Overrides MultivariateContinuousDistributionGetVarianceCovarianceMatrix.)
Public methodLogProbabilityDensityFunction
Returns the natural logarithm of the probability density function (PDF) of this distribution for the specified value.
(Overrides MultivariateContinuousDistributionLogProbabilityDensityFunction(VectorDouble).)
Public methodProbabilityDensityFunction
Returns the value of the probability density function (PDF) of this distribution for the specified value.
(Inherited from MultivariateContinuousDistribution.)
Public methodSample(Random)
Returns a random sample from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodSample(Random, Int32)
Returns a matrix with random samples from the distribution.
(Inherited from MultivariateContinuousDistribution.)
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Top
Remarks

The multivariate normal distribution is a generalization of the normal distribution. The mean of the multivariate distribution is a vector. The multivariate equivalent of the variance is the variance-covariance matrix, which must be positive semi-definite.

See Also

Reference

Extreme.Statistics.Distributions Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.