Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics.Distributions
    • ArcsineDistribution Class
    • BernoulliDistribution Class
    • BetaDistribution Class
    • BinomialDistribution Class
    • CauchyDistribution Class
    • ChiSquareDistribution Class
    • ContinuousDistribution Class
    • ContinuousUniformDistribution Class
    • DirichletDistribution Class
    • DiscreteDistribution Class
    • DiscreteDistribution(T) Class
    • DiscreteUniformDistribution Class
    • Distribution Class
    • ErlangDistribution Class
    • EstimationMethod Enumeration
    • ExponentialDistribution Class
    • FDistribution Class
    • GammaDistribution Class
    • GaussianMixtureDistribution Class
    • GeneralizedParetoDistribution Class
    • GenericDiscreteDistribution Class
    • GeometricDistribution Class
    • GumbelDistribution Class
    • HyperbolicDistribution Class
    • HypergeometricDistribution Class
    • InverseChiSquareDistribution Class
    • InverseGammaDistribution Class
    • InverseGaussianDistribution Class
    • InverseWeibullDistribution Class
    • JohnsonDistribution Class
    • JohnsonDistributionType Enumeration
    • LaplaceDistribution Class
    • LogarithmicSeriesDistribution Class
    • LogisticDistribution Class
    • LogLogisticDistribution Class
    • LognormalDistribution Class
    • MaxwellDistribution Class
    • MultivariateContinuousDistribution Class
    • MultivariateNormalDistribution Class
    • NegativeBinomialDistribution Class
    • NonCentralBetaDistribution Class
    • NonCentralChiSquareDistribution Class
    • NonCentralFDistribution Class
    • NonCentralStudentTDistribution Class
    • NormalDistribution Class
    • NormalInverseGaussianDistribution Class
    • ParetoDistribution Class
    • ParetoDistributionVariant Enumeration
    • PertDistribution Class
    • PiecewiseDistribution Class
    • PoissonDistribution Class
    • RandomExtensions Class
    • RayleighDistribution Class
    • StudentTDistribution Class
    • TransformedBetaDistribution Class
    • TransformedGammaDistribution Class
    • TriangularDistribution Class
    • TruncatedDistribution Class
    • WeibullDistribution Class
    • WishartDistribution Class
  • NonCentralChiSquareDistribution Class
    • NonCentralChiSquareDistribution Constructor
    • Properties
    • Methods

NonCentralChiSquareDistribution Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents a non-central chi-squared distribution.
Inheritance Hierarchy

SystemObject
  Extreme.Statistics.DistributionsDistribution
    Extreme.Statistics.DistributionsContinuousDistribution
      Extreme.Statistics.DistributionsNonCentralChiSquareDistribution

Namespace:  Extreme.Statistics.Distributions
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
[SerializableAttribute]
public class NonCentralChiSquareDistribution : ContinuousDistribution
<SerializableAttribute>
Public Class NonCentralChiSquareDistribution
	Inherits ContinuousDistribution
[SerializableAttribute]
public ref class NonCentralChiSquareDistribution : public ContinuousDistribution
[<SerializableAttribute>]
type NonCentralChiSquareDistribution =  
    class
        inherit ContinuousDistribution
    end

The NonCentralChiSquareDistribution type exposes the following members.

Constructors

  NameDescription
Public methodNonCentralChiSquareDistribution
Constructs a new Chi Squared distribution.
Top
Properties

  NameDescription
Public propertyDegreesOfFreedom
Gets the degrees of freedom for this chi-square distribution.
Public propertyEntropy
Gets the entropy of the distribution.
(Inherited from Distribution.)
Public propertyInterQuartileRange
Returns the inter-quartile range of this distribution.
(Inherited from ContinuousDistribution.)
Public propertyIsSymmetrical
Gets whether the distribution is known to be symmetrical around the mean.
(Inherited from ContinuousDistribution.)
Public propertyIsUnimodal
Gets whether the distribution has one or more modes.
(Inherited from ContinuousDistribution.)
Public propertyKurtosis
Gets the kurtosis of the distribution.
(Overrides DistributionKurtosis.)
Public propertyMean
Gets the mean or expectation value of the distribution.
(Overrides DistributionMean.)
Public propertyMedian
Gets the median of the distribution.
(Inherited from ContinuousDistribution.)
Public propertyMode
Gets the mode of the distribution.
(Inherited from ContinuousDistribution.)
Public propertyNonCentralityParameter
Gets the non-centrality parameter.
Public propertyNumberOfModes
Gets the number of modes of the distribution.
(Inherited from ContinuousDistribution.)
Public propertySkewness
Gets the skewness of the distribution.
(Overrides DistributionSkewness.)
Public propertyStandardDeviation
Gets the standard deviation of the distribution.
(Inherited from Distribution.)
Public propertyStatisticSymbol
Gets the common symbol to describe a statistic from the distribution.
(Overrides DistributionStatisticSymbol.)
Public propertySupport
Gets the support of the distribution.
(Overrides ContinuousDistributionSupport.)
Public propertyVariance
Gets the variance of the distribution.
(Overrides DistributionVariance.)
Top
Methods

  NameDescription
Public methodCdf
Evaluates the cumulative distribution function (CDF) of this distribution for the specified value.
(Inherited from ContinuousDistribution.)
Public methodDistributionFunction
Returns the value of the cumulative probability distribution function.
(Overrides ContinuousDistributionDistributionFunction(Double).)
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetAllModes
Returns an array that contains all the modes of the distribution.
(Inherited from ContinuousDistribution.)
Public methodGetExpectationValue(FuncDouble, Double)
Returns the expectation value of a function.
(Inherited from ContinuousDistribution.)
Public methodGetExpectationValue(FuncDouble, Double, Double, Double)
Returns the un-normalized expectation value of a function over the specified interval.
(Inherited from ContinuousDistribution.)
Public methodGetExpectedHistogram(Double, Double)
Gets a vector containing a histogram of the expected number of samples for a given total number of samples.
(Inherited from ContinuousDistribution.)
Public methodGetExpectedHistogram(IntervalIndexDouble, Double)
Gets a vector containing a histogram of the expected number of samples for a given total number of samples.
(Inherited from ContinuousDistribution.)
Public methodGetExpectedHistogram(Double, Double, Int32, Double)
Gets a vector whose bins contain the expected number of samples for a given total number of samples.
(Inherited from ContinuousDistribution.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetRandomSequence
Returns a sequence of random samples from the distribution.
(Inherited from ContinuousDistribution.)
Public methodGetRandomSequence(Random)
Returns a sequence of random samples from the distribution.
(Inherited from ContinuousDistribution.)
Public methodGetRandomSequence(Random, Int32)
Returns a sequence of random samples of the specified length from the distribution.
(Inherited from ContinuousDistribution.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodHazardFunction
Returns the probability of failure at the specified value.
(Inherited from ContinuousDistribution.)
Public methodInverseCdf
Returns the inverse of the DistributionFunction(Double).
(Inherited from ContinuousDistribution.)
Public methodInverseDistributionFunction
Returns the inverse of the DistributionFunction(Double).
(Overrides ContinuousDistributionInverseDistributionFunction(Double).)
Public methodLeftTailProbability
Returns the probability that a sample from the distribution is less than the specified value.
(Inherited from ContinuousDistribution.)
Public methodLogProbabilityDensityFunction
Returns the logarithm of the probability density function (PDF) of this distribution for the specified value.
(Inherited from ContinuousDistribution.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodMomentFunction
Returns the value of the moment function of the specified order.
(Inherited from ContinuousDistribution.)
Public methodPdf
Returns the value of the probability density function (PDF) of this distribution for the specified value.
(Inherited from ContinuousDistribution.)
Public methodProbability
Returns the probability that a sample taken from the distribution lies inside the specified interval.
(Inherited from ContinuousDistribution.)
Public methodProbabilityDensityFunction
Returns the value of the probability density function (PDF) of this distribution for the specified value.
(Overrides ContinuousDistributionProbabilityDensityFunction(Double).)
Public methodRightTailProbability
Returns the probability that a sample from the distribution is larger than the specified value.
(Inherited from ContinuousDistribution.)
Public methodSample
Returns a random sample from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSample(Int32)
Returns a vector of random samples from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSample(Random)
Returns a random sample from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSample(Int32, Random)
Returns a vector of random samples from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSampleInto(Random, IListDouble)
Fills a list with random numbers from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSampleInto(Random, IListDouble, Int32, Int32)
Fills part of a list with random numbers from the distribution.
(Inherited from ContinuousDistribution.)
Public methodSurvivorDistributionFunction
Evaluates the survivor distribution function (SDF) of this distribution for the specified value.
(Overrides ContinuousDistributionSurvivorDistributionFunction(Double).)
Public methodToString
Returns a string that represents the current object.
(Overrides ObjectToString.)
Public methodTwoTailedProbability
Returns the probability that a sample from the distribution deviates from the mean more than the specified value.
(Inherited from ContinuousDistribution.)
Top
Remarks

The sum of the squares of n indepemdent normal variables with zero mean and unit variance has a chi-squared distribution with n degrees of freedom. This means it also describes the Variance of samples taken from a normal distribution.

From this last property, we can see the usefulness of the chi-squared distribution as a test of statistical significance. We can determine the likelihood of obtaining a sample that deviates from the expected value by a specified amount.

The sum of two or more variables that have a chi-squared distribution also has a chi-squared distribution. The number of degrees of freedom of the new distribution equals the sum of the degrees of freedom of the original distributions.

See Also

Reference

Extreme.Statistics.Distributions Namespace

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.