Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference

Skip Navigation LinksHome»Documentation»Reference»Extreme.Statistics»HypothesisTests Class

HypothesisTests Class

Extreme Optimization Numerical Libraries for .NET Professional
Contains static methods to create hypothesis tests.
Inheritance Hierarchy

SystemObject
  Extreme.StatisticsHypothesisTests

Namespace:  Extreme.Statistics
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public static class HypothesisTests
<ExtensionAttribute>
Public NotInheritable Class HypothesisTests
[ExtensionAttribute]
public ref class HypothesisTests abstract sealed
[<AbstractClassAttribute>]
[<SealedAttribute>]
[<ExtensionAttribute>]
type HypothesisTests =  class end

The HypothesisTests type exposes the following members.

Methods

  NameDescription
Public methodStatic memberAndersonDarlingTest
Returns an Anderson-Darling test whether a sample was drawn from the normal distribution.
Public methodStatic memberCramerVonMisesTest(VectorDouble, ContinuousDistribution)
Returns a Cramer-von Mises test that the specified values were drawn from the specified distribution.
Public methodStatic memberCramerVonMisesTest(VectorDouble, FuncDouble, Double)
Returns a Cramer-von Mises test that the specified values were drawn from a distribution with the specified distribution function.
Public methodStatic memberFTest(VectorDouble, VectorDouble, HypothesisType)
Returns an F test for the ratio of the variances of two populations.
Public methodStatic memberFTest(Double, Double, Double, Double, HypothesisType)
Returns an F test for the ratio of two variances.
Public methodStatic memberGoodnessOfFitTest(HistogramDouble, ContinuousDistribution, Int32)
Returns a ChiSquareGoodnessOfFitTest object to test if the distribution follows the specified distribution.
Public methodStatic memberGoodnessOfFitTest(HistogramInt32, DiscreteDistribution, Int32)
Returns a ChiSquareGoodnessOfFitTest object to test if the distribution follows the specified distribution.
Public methodStatic memberGoodnessOfFitTestT(HistogramT, HistogramT)
Returns a ChiSquareGoodnessOfFitTest object to test if the distribution follows the specified distribution specified as a histogram.
Public methodStatic memberKolmogorovSmirnovTest(VectorDouble, VectorDouble)
Returns a Kolmogorov-Smirnov test whether two samples were drawn from the same distribution.
Public methodStatic memberKolmogorovSmirnovTest(VectorDouble, ContinuousDistribution)
Returns a Kolmogorov-Smirnov test whether a sample was drawn from the specified distribution.
Public methodStatic memberKolmogorovSmirnovTest(VectorDouble, FuncDouble, Double)
Returns a Kolmogorov-Smirnov test whether a sample was drawn from the specified distribution.
Public methodStatic memberMcNemarTest(ICategoricalVector, ICategoricalVector, Boolean)
Returns a McNemar test whether proportions are the same in two samples.
Public methodStatic memberMcNemarTestT(IListT, IListT, Boolean)
Returns a McNemar test whether proportions are the same in two samples.
Public methodStatic memberPairedTTest
Returns a paired TwoSampleTTest for the difference between two population means.
Public methodStatic memberShapiroWilkTest
Returns a Shapiro-Wilk test whether a sample was drawn from the normal distribution.
Public methodStatic memberStuartMaxwellTest
Constructs a new StuartMaxwellTest.
Public methodStatic memberTTest(VectorDouble, Double, HypothesisType)
Returns a new OneSampleTTest for the mean of a population.
Public methodStatic memberTTest(Double, Double, Int32, Double, HypothesisType)
Returns a OneSampleTTest for the mean of a population based on properties of a sample from the population.
Public methodStatic memberTwoSampleZTest
Constructs a new TwoSampleZTest(ICategoricalVector, ICategoricalVector, Double, HypothesisType) for the specified samples.
Public methodStatic memberUnpairedTTest
Returns an unpaired TwoSampleTTest for the difference between two population means.
Public methodStatic memberZTest(VectorDouble, Double, Double, HypothesisType)
Returns a Z test for the mean of a population with known variance.
Public methodStatic memberZTest(Int32, Double, Double, Double, HypothesisType)
Returns a Z test for the mean of a population with known variance.
Public methodStatic memberZTest(Int32, Double, Int32, Double, Double, HypothesisType)
Constructs a new TwoSampleZTest(ICategoricalVector, ICategoricalVector, Double, HypothesisType) for the difference between two proportions.
Top
See Also

Reference

Extreme.Statistics Namespace

Copyright (c) 2004-2023 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2023, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.