Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Blog
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference
  • Extreme Optimization
    • Features
    • Solutions
    • Documentation
    • QuickStart Samples
    • Sample Applications
    • Downloads
    • Technical Support
    • Download trial
    • How to buy
    • Blog
    • Company
    • Resources
  • Documentation
    • Introduction
    • Deployment Guide
    • Nuget packages
    • Configuration
    • Using Parallelism
    • Mathematics Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Data Access Library User's Guide
    • Reference
  • Reference
    • Extreme
    • Extreme.Collections
    • Extreme.Data
    • Extreme.Data.Json
    • Extreme.Data.Matlab
    • Extreme.Data.R
    • Extreme.Data.Stata
    • Extreme.Data.Text
    • Extreme.DataAnalysis
    • Extreme.DataAnalysis.Linq
    • Extreme.DataAnalysis.Models
    • Extreme.Mathematics
    • Extreme.Mathematics.Algorithms
    • Extreme.Mathematics.Calculus
    • Extreme.Mathematics.Calculus.OrdinaryDifferentialEquations
    • Extreme.Mathematics.Curves
    • Extreme.Mathematics.Curves.Nonlinear
    • Extreme.Mathematics.Distributed
    • Extreme.Mathematics.EquationSolvers
    • Extreme.Mathematics.Generic
    • Extreme.Mathematics.LinearAlgebra
    • Extreme.Mathematics.LinearAlgebra.Implementation
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers
    • Extreme.Mathematics.LinearAlgebra.IterativeSolvers.Preconditioners
    • Extreme.Mathematics.Optimization
    • Extreme.Mathematics.Optimization.LineSearches
    • Extreme.Mathematics.Random
    • Extreme.Mathematics.SignalProcessing
    • Extreme.Providers
    • Extreme.Providers.InteropServices
    • Extreme.Statistics
    • Extreme.Statistics.Distributions
    • Extreme.Statistics.Multivariate
    • Extreme.Statistics.Tests
    • Extreme.Statistics.TimeSeriesAnalysis
  • Extreme.Statistics
    • AnovaModel Class
    • AnovaModelRow Class
    • AnovaRow Class
    • AnovaRowType Enumeration
    • AnovaTable Class
    • Cell Structure
    • ContingencyTable Class
    • ContingencyTableCell Structure
    • DateTimeInterval Structure
    • Descriptives(T) Class
    • Filter Class
    • GeneralizedLinearModel Class
    • HypothesisTests Class
    • Kernel Class
    • KernelDensity Class
    • KernelDensityBandwidthEstimator Enumeration
    • LinearRegressionModel Class
    • LinkFunction Class
    • LogisticRegressionMethod Enumeration
    • LogisticRegressionModel Class
    • ModelFamily Class
    • NearestCorrelationMatrixAlgorithm Enumeration
    • NonlinearRegressionModel Class
    • OneWayAnovaModel Class
    • OneWayRAnovaModel Class
    • PolynomialRegressionModel Class
    • RegularizedRegressionModel Class
    • ScaleFittingMethod Enumeration
    • SimpleRegressionKind Enumeration
    • SimpleRegressionModel Class
    • Stats Class
    • StepwiseCriterion Enumeration
    • StepwiseOptions Class
    • StepwiseRegressionMethod Enumeration
    • SumsOfSquaresType Enumeration
    • TestOfHomogeneityOfVariances Enumeration
    • TestOfNormality Enumeration
    • TwoWayAnovaModel Class
    • WindowFilter Class

Extreme.Statistics Namespace

Extreme Optimization Numerical Libraries for .NET Professional
The Extreme.Statistics namespace contains classes that are used to represent statistical models.
Classes

  ClassDescription
Public classAnovaModel
Represents an Analysis of Variance (ANOVA) model.
Public classAnovaModelRow
Represents a row representing a contribution from the model in an AnovaTable.
Public classAnovaRow
Represents a row in an AnovaTable.
Public classAnovaTable
Represents a table containing the results of an ANOVA analysis.
Public classContingencyTable
Represents a table that cross-tabulates totals from two categorical variables.
Public classDescriptivesT
Collects descriptive statistics for a variable.
Public classFilter
Represents a filter that can be used to select observations in a VectorT or IDataFrame.
Public classGeneralizedLinearModel
Represents a generalized linear model.
Public classHypothesisTests
Contains static methods to create hypothesis tests.
Public classKernel
Represents a kernel used for kernel density estimation.
Public classKernelDensity
Contains methods for computing kernel density estimates.
Public classLinearRegressionModel
Represents a linear regression model.
Public classLinkFunction
Represents a link function in a GeneralizedLinearModel.
Public classLogisticRegressionModel
Represents a logistic regression model.
Public classModelFamily
Represents a family of distributions for the dependent variable in a GeneralizedLinearModel.
Public classNonlinearRegressionModel
Represents a nonlinear regression model.
Public classOneWayAnovaModel
Represents the results of a one-way analysis of variance (ANOVA).
Public classOneWayRAnovaModel
Represents an analysis of variance (ANOVA) calculation.
Public classPolynomialRegressionModel
Represents a polynomial regression model.
Public classRegularizedRegressionModel
Represents a regularized (ridge or LASSO) regression model.
Public classSimpleRegressionModel
Represents a linear regression model.
Public classStats
Provides static methods for descriptive statistics and other statistical functions.
Public classStepwiseOptions
Specifies options for stepwise regression calculations.
Public classTwoWayAnovaModel
Represents a two-way within-subjects Analysis of Variance (ANOVA) model.
Public classWindowFilter
Represents a sliding window on a variable or variable collection.
Structures

  StructureDescription
Public structureCell
Represents a data cell in an AnovaModel.
Public structureContingencyTableCell
Represents a bin in a ContingencyTable.
Public structureDateTimeInterval
Represents an interval of real numbers.
Enumerations

  EnumerationDescription
Public enumerationAnovaRowType
Enumerates the possible types of rows in an AnovaTable.
Public enumerationKernelDensityBandwidthEstimator
Enumerates the options for estimating the bandwidth in kernel density estimation.
Public enumerationLogisticRegressionMethod
Enumerates the variants of logistic regression that can be represented by a LogisticRegressionModel.
Public enumerationNearestCorrelationMatrixAlgorithm
Enumerates the possible algorithms for computing the nearest correlation matrix.
Public enumerationScaleFittingMethod
Enumerates the possible ways to estimate the scale parameter in a generalized linear model.
Public enumerationSimpleRegressionKind
Enumerates the different kinds of regression between two variables.
Public enumerationStepwiseCriterion
Enumerates the possible ways to define the threshold for the to-enter and to-remove values.
Public enumerationStepwiseRegressionMethod
Enumerates the possible ways to perform a stepwise regression.
Public enumerationSumsOfSquaresType
Enumerates the types of sums of squares available when computing an ANOVA table.
Public enumerationTestOfHomogeneityOfVariances
Enumerates the choices when testing whether a number of samples have the same variance.
Public enumerationTestOfNormality
Enumerates the choices when testing whether a sample follows a normal distribution.

Copyright (c) 2004-2021 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2021, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.