Illustrates how to perform a Principal Components Analysis using classes in the Extreme.Statistics.Multivariate namespace in IronPython.
import numerics
from Extreme.Mathematics import *
from Extreme.Mathematics.LinearAlgebra.IO import *
from Extreme.Statistics import *
from Extreme.Statistics.Multivariate import *
#/ Demonstrates how to use classes that implement
#/ Principal Component Analysis (PCA).
# This QuickStart Sample demonstrates how to perform
# a principal component analysis on a set of data.
#
# The classes used in this sample reside in the
# Extreme.Statistics.Multivariate namespace..
# First, our dataset, 'depress.txt', which is from
# Computer-Aided Multivariate Analysis, 4th Edition
# by A. A. Afifi, V. Clark and S. May, chapter 16
# See http:#www.ats.ucla.edu/stat/Stata/examples/cama4/default.htm
# The data is in delimited text format. Use a matrix reader to load it into a matrix.
reader = DelimitedTextMatrixReader(r"..\Data\Depress.txt")
reader.MergeConsecutiveDelimiters = True
reader.SetColumnDelimiters(' ')
m = reader.ReadMatrix()
# The data we want is in columns 8 through 27:
m = m.GetSubmatrix(0, m.RowCount - 1, 8, 27)
#
# Principal component analysis
#
# We can construct PCA objects in many ways. Since we have the data in a matrix, # we use the constructor that takes a matrix as input.
pca = PrincipalComponentAnalysis(m)
# and immediately perform the analysis:
pca.Compute()
# We can get the contributions of each component:
print " # Eigenvalue Difference Contribution Contrib. %"
for i in range(5):
# We get the ith component from the model...
component = pca.Components[i]
# and write out its properties
print "{0:2}{1:12.4f}{2:11.4f}{2:14.3f}%{3:10.3f}%" \
.format( i, component.Eigenvalue, component.EigenvalueDifference, \
100 * component.ProportionOfVariance, 100 * component.CumulativeProportionOfVariance)
# To get the proportions for all components, use the
# properties of the PCA object:
proportions = pca.VarianceProportions
# To get the number of components that explain a given proportion
# of the variation, use the GetVarianceThreshold method:
count = pca.GetVarianceThreshold(0.9)
print "Components needed to explain 90% of variation:", count
print
# The value property gives the components themselves:
print "Components:"
print "Var. 1 2 3 4 5"
pcs = pca.Components
for i in range(pcs.Count):
print "{0:4}{1:8.4f}{2:8.4f}{3:8.4f}{4:8.4f}{5:8.4f}" \
.format(i, pcs[0].Value[i], pcs[1].Value[i], pcs[2].Value[i], pcs[3].Value[i], pcs[4].Value[i])
print
# The scores are the coefficients of the observations expressed as a combination
# of principal components.
scores = pca.ScoreMatrix
# To get the predicted observations based on a specified number of components, # use the GetPredictions method.
prediction = pca.GetPredictions(count)
print "Predictions using", count, "components:"
print " Pr. 1 Act. 1 Pr. 2 Act. 2 Pr. 3 Act. 3 Pr. 4 Act. 4", count
for i in range(0, 10):
print "{0:8.4f}{1:8.4f}{2:8.4f}{3:8.4f}{4:8.4f}{5:8.4f}{6:8.4f}{7:8.4f}" \
.format(prediction[0].GetValue(i), m[i, 0], prediction[1].GetValue(i), m[i, 1], \
prediction[2].GetValue(i), m[i, 2], prediction[3].GetValue(i), m[i, 3])