New Version 7.0!

Try it for free with our fully functional 60-day trial version.

Download now!

Get from Nuget

QuickStart Samples

Simple Time Series QuickStart Sample (IronPython)

Illustrates how to perform simple operations on time series data using classes in the Extreme.Statistics.TimeSeriesAnalysis namespace in IronPython.

C# code Visual Basic code F# code Back to QuickStart Samples

import numerics

import clr
from System.Data import *
from System.Data.OleDb import *

from System import DateTime

from Extreme.Statistics import *
from Extreme.Statistics.TimeSeriesAnalysis import *

#/ Illustrates the use of the TimeSeriesCollection class to represent
#/ and manipulate time series data.

# Time series collections can be created in a variety of ways.
# Here we use an ADO.NET data table:

def LoadTimeSeriesData():
	filename = r"..\Data\MicrosoftStock.xls"
	connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source="+filename+";Extended Properties='Excel 8.0;HDR=Yes;IMEX=1'"
	cnn = None
	ds = DataSet()
		cnn = OleDbConnection(connectionString)
		adapter = OleDbDataAdapter("Select * from [MicrosoftStock$]", cnn)
		adapter.Fill(	ds)
	except OleDbException as ex:
		print ex.InnerException
		if cnn != None:
	return ds.Tables[0]

seriesTable = LoadTimeSeriesData()
timeSeries = TimeSeriesCollection(seriesTable)

# The RowCount property returns the number of
# observations:
print "# observations:", timeSeries.Observations.Count

# The StartOfPeriodVariable property returns the
# DateTimeVariable that contains the start times
# for each period.
print "First date:", timeSeries.StartOfPeriodVariable.Minimum
# The EndOfPeriodVariable property returns the
# DateTimeVariable that contains the end times
# for each period.
print "Last date:", timeSeries.EndOfPeriodVariable.Maximum
# Data in a TimeSeriesCollection is always sorted 
# in ascending time order.

# Accessing variables

# Variables are accessed by name or numeric index.
# They need to be cast to the appropriate specialized
# type (NumericalVariable, DateTimeVariable, etc.)
close = timeSeries["Close"]
print "Average close price: ${0:F2}".format(close.Mean)

# Variables can also be accessed by numeric index:
print "3rd variable:", timeSeries[2].Name

# The GetSubset method returns the data from the specified range.
y2004 = DateTime(2004, 1, 1)
y2005 = DateTime(2005, 1, 1)
series2004 = timeSeries.CreateSubset(y2004, y2005)
print "Opening price on the first trading day of 2004:", series2004["Open"].GetValue(0)

# Transforming the Frequency

# The first step is to define the aggregator function
# for each variable. This function specifies how each
# observation in the new time series is calculated
# from the observations in the original series.

# The Aggregator class has a number of 
# pre-defined aggregator functions:
timeSeries["Open"].Aggregator = Aggregator.First
timeSeries["Close"].Aggregator = Aggregator.Last
timeSeries["High"].Aggregator = Aggregator.Maximum
timeSeries["Low"].Aggregator = Aggregator.Minimum
timeSeries["Volume"].Aggregator = Aggregator.Sum

# We can specify a subset of the series by providing
# the start and end dates.

# The TransformFrequency method returns a new series
# containing the aggregated data:
monthlySeries = timeSeries.TransformFrequency(y2004, y2005, DateTimeUnit.Month)

# We can now print the results:
print "Monthly statistics for Microsoft Corp. (MSFT)"
print "Month   Open   Close  High   Low    Volume"
for row in range(monthlySeries.Observations.Count):
    print " {0:MMM}    {1:.2f}  {2:.2f}  {3:.2f}  {4:.2f}  {5:10}" \
        .format(monthlySeries.StartOfPeriodVariable[row], monthlySeries["Open"].GetValue(row), \
        monthlySeries["Close"].GetValue(row), monthlySeries["High"].GetValue(row), monthlySeries["Low"].GetValue(row), monthlySeries["Volume"].GetValue(row))