Version 8.1

Supports .NET 7.0 and earlier. Try it for free with our fully functional 30-day trial version.

nuget

Get from Nuget

QuickStart Samples

Factor Analysis (FA) QuickStart Sample (Visual Basic)

Illustrates how to perform a Factor Analysis using classes in the Extreme.Statistics.Multivariate namespace in Visual Basic.

C# code F# code Back to QuickStart Samples

Option Infer On

Imports System
Imports System.Collections.ObjectModel

Imports Extreme.Mathematics
Imports Extreme.Mathematics.LinearAlgebra
Imports Extreme.Statistics
Imports Extreme.Statistics.IO
Imports Extreme.Statistics.Multivariate

Namespace Extreme.Numerics.QuickStart.VB

    ' <summary>
    ' Demonstrates how to use classes that implement
    ' Factor Analysis.
    ' </summary>
    Module FactorAnalysisExample

        Sub Main()

            ' This QuickStart Sample demonstrates how to perform
            ' a factor analysis on a set of data.
            '
            ' The classes used in this sample reside in the
            ' Extreme.Statistics.Multivariate namespace.

            ' First, our dataset, 'm255.dta', from Professor James Sidanius.
            '     See http://www.ats.ucla.edu/stat/sas/output/factor.htm

            ' Note: tolerances used to test for convergence in factor analysis 
            ' algorithms are usually set very low (around 0.001). As a result, 
            ' when comparing results from different programs, usually only 
            ' about the first 3 digits will be equal.

            ' The data is in Stata format. Use a matrix reader to load it into a matrix.
            Dim reader As New StataFileReader("..\..\..\..\Data\m255.dta")
            Dim frame = reader.ReadDataFrame()
            ' We'll use only these columns:
            Dim names As String() = {"item13", "item14", "item15", "item16", _
                    "item17", "item18", "item19", "item20", "item21", _
                    "item22", "item23", "item24"}
            ' First, filter out any rows with missing values:
            frame = frame.RemoveRowsWithMissingValues(names)

            ' 
            ' Factor analysis
            '

            ' We can construct FA objects in many ways. Since we have the data in a matrix,
            ' we use the constructor that takes a data matrix as input.
            Dim fa As New FactorAnalysis(frame, names)
            ' We set the number of factors:
            fa.NumberOfFactors = 3
            ' and immediately perform the analysis:
            fa.Compute()

            ' We can get the unrotated factors:
            Dim unrotatedFactors As ReadOnlyCollection(Of Factor) = fa.GetUnrotatedFactors()
            ' We can get the contributions of each factor:
            Console.WriteLine(" #    Eigenvalue Difference Contribution Contrib. %")
            For Each factor As Factor In unrotatedFactors
                ' and write out its properties
                Console.WriteLine("{0,2}{1,12:F4}{2,11:F4}{3,14:F3}{4,10:F3}", _
                    factor.Index, factor.Eigenvalue, factor.EigenvalueDifference, _
                    factor.ProportionOfVariance, _
                    factor.CumulativeProportionOfVariance)
            Next

            Console.WriteLine(Environment.NewLine + "Varimax rotation")

            ' Here are the loadings for each of the variables:
            Console.WriteLine(Environment.NewLine + "Unrotated loadings:")
            Console.WriteLine("Variable        1          2          3      Uniqueness")
            For i As Integer = 0 To names.Length - 1
                Console.WriteLine("  {0,8}{1,10:F5} {2,10:F5} {3,10:F5}{4,10:F5}",
                    names(i),
                    unrotatedFactors(0).Loadings(i),
                    unrotatedFactors(1).Loadings(i),
                    unrotatedFactors(2).Loadings(i),
                    fa.Uniqueness(i))
            Next

            ' Now we'll look at the rotated factors:
            Dim rotatedFactors As ReadOnlyCollection(Of Factor) = fa.GetRotatedFactors()
            Console.WriteLine(" #    Variance   Difference Proportion   Cumulative")
            For Each factor As Factor In rotatedFactors
                Console.WriteLine("{0,2}{1,12:F4}{2,11:F4}{3,13:F4}{4,11:F4}",
                    factor.Index, factor.VarianceExplained, "-",
                    factor.ProportionOfVariance,
                    factor.CumulativeProportionOfVariance)
            Next

            ' Here are the rotated loadings for each of the variables:
            Console.WriteLine(Environment.NewLine + "Rotated loadings (Varimax):")
            Console.WriteLine("Variable        1          2          3      Uniqueness")
            For i As Integer = 0 To names.Length - 1
                Console.WriteLine("  {0,8}{1,10:F5} {2,10:F5} {3,10:F5}{4,10:F5}",
                    names(i),
                    rotatedFactors(0).Loadings(i),
                    rotatedFactors(1).Loadings(i),
                    rotatedFactors(2).Loadings(i),
                    fa.Uniqueness(i))
            Next

            ' And the matrix that rotates the factors
            Console.WriteLine("Factor transformation matrix:" + Environment.NewLine + "{0:F4}",
                fa.FactorTransformationMatrix)

            Console.WriteLine(Environment.NewLine + "Promax rotation (power = 3)")

            ' Now let's use an (oblique) Promax rotation:
            fa.RotationMethod = FactorRotationMethod.Promax
            fa.PromaxPower = 3
            fa.Compute()

            ' Now we'll look at the rotated factors:
            Console.WriteLine(Environment.NewLine + "Rotated factor variance explained:")
            rotatedFactors = fa.GetRotatedFactors()
            Console.WriteLine(" #    Variance")
            For Each factor As Factor In rotatedFactors
                Console.WriteLine("{0,2}{1,12:F4}",
                    factor.Index, factor.VarianceExplained)
            Next


            ' Here are the rotated loadings for each of the variables:
            Console.WriteLine(Environment.NewLine + "Rotated loadings/pattern (Promax):")
            Console.WriteLine("Variable        1          2          3   Communality Uniqueness")
            For i As Integer = 0 To names.Length - 1
                ' and write out its properties
                Console.WriteLine("  {0,8}{1,10:F5}{2,10:F5}{3,10:F5}{4,10:F5} {5,10:F5}",
                    names(i),
                    rotatedFactors(0).Loadings(i),
                    rotatedFactors(1).Loadings(i),
                    rotatedFactors(2).Loadings(i),
                    fa.Communalities(i),
                    fa.Uniqueness(i))
            Next

            ' Here are the rotated loadings for each of the variables:
            Console.WriteLine(Environment.NewLine + "Rotated factor structure:")
            Console.WriteLine("Variable        1          2          3")
            For i As Integer = 0 To names.Length - 1
                ' and write out its properties
                Console.WriteLine("  {0,8}{1,10:F5} {2,10:F5} {3,10:F5}",
                    names(i),
                    rotatedFactors(0).Structure(i),
                    rotatedFactors(1).Structure(i),
                    rotatedFactors(2).Structure(i))
            Next

            ' For oblique rotations, the factors are usually correlated:
            Console.WriteLine("Factor correlation matrix:" + Environment.NewLine + "{0:F4}",
                fa.FactorCorrelationMatrix)

            '
            ' Factor analysis on a correlation matrix
            ' 

            Console.WriteLine(Environment.NewLine + "Using a correlation matrix")

            ' This example is from Exploratory Factor Analysis
            ' http://www.oup.com/us/companion.websites/9780199734177/supplementary/example/
            Dim values As Double() = {
                1.0, 0.666, 0.15, 0.617, 0.541, 0.653, 0.473, 0.549, 0.566,
                0.666, 1.0, 0.247, 0.576, 0.51, 0.642, 0.425, 0.544, 0.488,
                0.15, 0.247, 1.0, 0.222, 0.081, 0.164, 0.091, 0.181, 0.12,
                0.617, 0.576, 0.222, 1.0, 0.409, 0.56, 0.338, 0.448, 0.349,
                0.541, 0.51, 0.081, 0.409, 1.0, 0.667, 0.734, 0.465, 0.754,
                0.653, 0.642, 0.164, 0.56, 0.667, 1.0, 0.596, 0.54, 0.672,
                0.473, 0.425, 0.091, 0.338, 0.734, 0.596, 1.0, 0.432, 0.718,
                0.549, 0.544, 0.181, 0.448, 0.465, 0.54, 0.432, 1.0, 0.412,
                0.566, 0.488, 0.12, 0.349, 0.754, 0.672, 0.718, 0.412, 1.0
            }
            Dim R = Matrix.CreateSymmetric(9, values,
                MatrixTriangle.Upper, MatrixElementOrder.ColumnMajor, True)
            fa = New FactorAnalysis(R, FactorMethod.Correlation)
            fa.NumberOfFactors = 2
            fa.ExtractionMethod = FactorExtractionMethod.MaximumLikelihood
            fa.RotationMethod = FactorRotationMethod.Varimax
            fa.Compute()

            names = New String() {"Hugs", "Comps", "PerAd", "SocAd", "ProAd",
                "ComSt", "PhyHlp", "Encour", "Tutor"}

            ' Here are the initial:
            Console.WriteLine(Environment.NewLine + "Rotated factor loadings:")
            Console.WriteLine("Variable     Initial    Extracted")
            For i As Integer = 0 To names.Length - 1
                Console.WriteLine("  {0,8}{1,10:F5} {2,10:F5}",
                    names(i),
                    fa.InitialCommunalities(i),
                    fa.Communalities(i))
            Next

            ' Here are the rotated loadings for each of the variables:
            ' Note that in the SPSS output, the ordering of the variables
            ' is different.
            unrotatedFactors = fa.GetUnrotatedFactors()
            Console.WriteLine(Environment.NewLine + "Unrotated factor loadings:")
            Console.WriteLine("Variable        1          2")
            For i As Integer = 0 To names.Length - 1
                Console.WriteLine("  {0,8}{1,10:F5} {2,10:F5}",
                    names(i),
                    unrotatedFactors(0).Loadings(i),
                    unrotatedFactors(1).Loadings(i))
            Next

            ' Here are the rotated loadings for each of the variables:
            rotatedFactors = fa.GetRotatedFactors()
            Console.WriteLine(Environment.NewLine + "Rotated factor loadings:")
            Console.WriteLine("Variable        1          2")
            For i As Integer = 0 To names.Length - 1
                Console.WriteLine("  {0,8}{1,10:F5} {2,10:F5}", _
                    names(i), _
                    rotatedFactors(0).Loadings(i), _
                    rotatedFactors(1).Loadings(i))
            Next

            Console.Write("Press any key to exit.")
            Console.ReadLine()

        End Sub

    End Module

End Namespace