Extreme Optimization™: Complexity made simple.

Math and Statistics
Libraries for .NET

  • Home
  • Features
    • Math Library
    • Vector and Matrix Library
    • Statistics Library
    • Performance
    • Usability
  • Documentation
    • Introduction
    • Math Library User's Guide
    • Vector and Matrix Library User's Guide
    • Data Analysis Library User's Guide
    • Statistics Library User's Guide
    • Reference
  • Resources
    • Downloads
    • QuickStart Samples
    • Sample Applications
    • Frequently Asked Questions
    • Technical Support
  • Order
  • Company
    • About us
    • Testimonials
    • Customers
    • Press Releases
    • Careers
    • Partners
    • Contact us
Introduction
Deployment Guide
Nuget packages
Configuration
Using Parallelism
Expand Mathematics Library User's GuideMathematics Library User's Guide
Expand Vector and Matrix Library User's GuideVector and Matrix Library User's Guide
Expand Data Analysis Library User's GuideData Analysis Library User's Guide
Expand Statistics Library User's GuideStatistics Library User's Guide
Expand Data Access Library User's GuideData Access Library User's Guide
Expand ReferenceReference

Skip Navigation LinksHome»Documentation»Reference»Extreme.DataAnalysis.Models»RegressionModel(T) Class

RegressionModelT Class

Extreme Optimization Numerical Libraries for .NET Professional
Represents a statistical model.
Inheritance Hierarchy

SystemObject
  Extreme.DataAnalysis.ModelsModel
    Extreme.DataAnalysis.ModelsRegressionModelT
      Extreme.StatisticsGeneralizedLinearModel
      Extreme.StatisticsLinearRegressionModel
      Extreme.StatisticsNonlinearRegressionModel
      Extreme.StatisticsRegularizedRegressionModel
      Extreme.StatisticsSimpleRegressionModel

Namespace:  Extreme.DataAnalysis.Models
Assembly:  Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.1
Syntax

C#
VB
C++
F#
Copy
public abstract class RegressionModel<T> : Model
Public MustInherit Class RegressionModel(Of T)
	Inherits Model
generic<typename T>
public ref class RegressionModel abstract : public Model
[<AbstractClassAttribute>]
type RegressionModel<'T> =  
    class
        inherit Model
    end

Type Parameters

T

The RegressionModelT type exposes the following members.

Constructors

  NameDescription
Protected methodRegressionModelT
Constructs a new univariate model based on a model specification.
Top
Properties

  NameDescription
Public propertyAdjustedRSquared
Gets the adjusted R Squared value for the regression.
Public propertyAnovaTable
Gets the AnovaTable that summarizes the results of this model.
Public propertyBaseFeatureIndex
Gets an index containing the keys of the columns that are required inputs to the model.
(Inherited from Model.)
Public propertyComputed Obsolete.
Gets whether the model has been computed.
(Inherited from Model.)
Public propertyCovarianceMatrix
Gets the covariance matrix of the model parameters.
Public propertyData
Gets an object that contains all the data used as input to the model.
(Inherited from Model.)
Public propertyDegreesOfFreedom
Gets the total degrees of freedom of the data.
Public propertyDependentVariable
Gets a vector that contains the dependent variable that is to be fitted.
Public propertyFitted
Gets whether the model has been computed.
(Inherited from Model.)
Public propertyFStatistic
Gets the F statistic for the regression.
Public propertyIndependentVariables
Gets a matrix whose columns contain the independent variables in the model.
Public propertyInputSchema
Gets the schema for the features used for fitting the model.
(Inherited from Model.)
Public propertyLogLikelihood
Gets the log-likelihood that the model generated the data.
Public propertyMaxDegreeOfParallelism
Gets or sets the maximum degree of parallelism enabled by this instance.
(Inherited from Model.)
Public propertyModelSchema
Gets the collection of variables used in the model.
(Inherited from Model.)
Public propertyNumberOfObservations
Gets the number of observations the model is based on.
(Inherited from Model.)
Protected propertyParallelOptions
Gets or sets an object that specifies how the calculation of the model should be parallelized.
(Inherited from Model.)
Public propertyParameters
Gets the collection of parameters associated with this model.
Public propertyParameterValues
Gets the values of the parameters associated with this model.
Public propertyPredictions
Gets a vector containing the model's predicted values for the dependent variable.
Public propertyPValue
Gets the probability corresponding to the F statistic for the regression.
Public propertyResiduals
Gets a vector containing the residuals of the model.
Public propertyResidualSumOfSquares
Gets the sum of squares of the residuals of the model.
Public propertyRSquared
Gets the R Squared value for the regression.
Public propertyStandardError
Gets the standard error of the regression.
Public propertyStatus
Gets the status of the model, which determines which information is available.
(Inherited from Model.)
Public propertySupportsWeights
Indicates whether the model supports case weights.
(Inherited from Model.)
Public propertyWeights
Gets or sets the actual weights.
(Inherited from Model.)
Top
Methods

  NameDescription
Public methodCompute Obsolete.
Computes the model.
(Inherited from Model.)
Public methodCompute(ParallelOptions) Obsolete.
Computes the model.
(Inherited from Model.)
Public methodContains
Returns whether another RegressionModelT is nested within this instance.
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodFit
Fits the model to the data.
(Inherited from Model.)
Public methodFit(ParallelOptions)
Fits the model to the data.
(Inherited from Model.)
Protected methodFitCore
Computes the model to the specified input using the specified parallelization options.
(Inherited from Model.)
Public methodGetAkaikeInformationCriterion
Returns the Akaike information criterion (AIC) value for the model.
Public methodGetBayesianInformationCriterion
Returns the Bayesian information criterion (BIC) value for the model.
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodPredict(IDataFrame, ModelInputFormat)
Predicts the value of the output corresponding to the specified features.
Public methodPredict(MatrixT, ModelInputFormat)
Predicts the value of the output corresponding to the specified features.
Public methodPredict(VectorT, ModelInputFormat)
Predicts the value of the output corresponding to the specified features.
Protected methodPredictCore(MatrixT, Boolean)
Predicts the value of the dependent variable based on the specified values of the features.
Protected methodPredictCore(VectorT, Boolean)
Predicts the value of the dependent variable based on the specified values of the features.
Public methodResetComputation Obsolete.
Clears all fitted model parameters.
(Inherited from Model.)
Public methodResetFit
Clears all fitted model parameters.
(Inherited from Model.)
Public methodSetDataSource
Uses the specified data frame as the source for all input variables.
(Inherited from Model.)
Public methodSummarize
Returns a string containing a human-readable summary of the object using default options.
(Inherited from Model.)
Public methodSummarize(SummaryOptions)
Returns a string containing a human-readable summary of the object using the specified options.
(Overrides ModelSummarize(SummaryOptions).)
Public methodToString
Returns a string that represents the current object.
(Inherited from Model.)
Top
Remarks

This is an abstract base class and cannot be instantiated directly. Instead, use one of the inherited types, as listed in the table below:

ClassDescription
SimpleRegressionModelA simple linear regression model with one independent variable.
LinearRegressionModelA regression model with multiple independent variables.
PolynomialRegressionModelA linear regression model that uses a polynomial in one variable.
GeneralizedLinearModelA multiple linear regression model with multiple independent variables.
NonlinearRegressionModelA multiple linear regression model with multiple independent variables.

Note to inheritors: When you inherit from RegressionModelT,you must override FitCore(ModelInput, ParallelOptions).

See Also

Reference

Extreme.DataAnalysis.Models Namespace

Copyright (c) 2004-2023 ExoAnalytics Inc.

Send comments on this topic to support@extremeoptimization.com

Copyright © 2004-2023, Extreme Optimization. All rights reserved.
Extreme Optimization, Complexity made simple, M#, and M Sharp are trademarks of ExoAnalytics Inc.
Microsoft, Visual C#, Visual Basic, Visual Studio, Visual Studio.NET, and the Optimized for Visual Studio logo
are registered trademarks of Microsoft Corporation.